
CMSC 714
Lecture 11

IBM Cell BE and GPUs vs. CPUs

Alan Sussman

2 CMSC 714 - Alan Sussman

Notes

●  OpenMP project due tomorrow
–  questions?

●  Research project info posted later today
–  due dates
–  topics from previous semesters

3

Cell Broadband Engine (Cell BE)
●  GPU style design, initially targeted at graphics and gaming

applications
●  Each processor has one 64-bit PowerPC processor (PPE) and 8

synergistic processing elements (SPEs)
●  SPE is a 128-bit SIMD processor with 256KB local memory

–  128 bits can be used as 2 64-bit floats or integers, 4 32-bit floats or
integers, 8 16-bit integers, or 16 8-bit chars

–  all memory ops are 128 bit, so smaller accesses more complicated
– need masks, sometimes read-modify-write

–  up to 2 instructions per cycle, if to both even and odd pipe
–  since branches slow, default is branch not taken, but can use hint

(an instruction) to change the default
•  also causes prefetch of instructions on new path

–  explicit movement of instructions and data between main memory
and SPE local memories, using 128 byte unit DMAs (max 16KB
each)

•  DMA engine is coherent with PPE caches and main memory
CMSC 714 - Alan Sussman 4

Cell Broadband Engine
●  Need to compile both for PPE and SPEs

–  PPE is main control, and calls out to SPEs, typically via library calls
– user can write code for both

–  need all sorts of optimizations to deal with SPE oddities
•  to operate on parts of the 128 bit data chunks
•  to move data and instructions into and out of local SPE memory
•  to optimize branches, instruction scheduling, etc.
•  align stream accesses properly

–  IBM also does some auto-parallelization (auto-SIMDization), so
programmer doesn’t have to write multiple programs

•  start from OpenMP code
•  compiler generates code sections for PPE and SPEs, and

coordinates execution across them, with help from runtime
library

•  need to do data transfer and code partitioning optimizations

CMSC 714 - Alan Sussman

5

GPUs vs. CPUs
●  Study targeting throughput computing

–  Also called streaming applications sometimes, or data parallel
●  Architectural limits to parallelism

–  CPUs have limited number of cores
–  GPUs have limited capabilities, e.g. no caches

●  End results, on a set of representative benchmarks, is that
GPU performs 2.5X faster than CPU
–  Application kernels include linear algebra (SGEMM from BLAS),

Monte Carlo, Convolution, FFT, SAXPY (from BLAS), Lattice
Boltzman (CFD), Constraint Solver, Sparse Matrix/Vector
Multiply, Collision Detection (virtual environments), Radix Sort,
Ray Casting, Index Search, Histogram, Bilateral Filter (image
processing)

–  Platforms are Intel Core i7 CPU (4 hyper-threaded cores, 4-
wide SIMD units, and caches) and NVIDIA GTX280 GPU (array
of 30 SMs, each with 8 scalar processing units and local
memory)

CMSC 714 - Alan Sussman 6

GPUs vs. CPUs

●  Main advantage of CPU is caches
–  For fast single thread performance, but also helps with multi-

threaded apps
–  Disadvantage is complexity, limiting number of cores per chip
–  Also have fast synchronization

●  Main advantage of GPU is high throughput
–  each instruction for an SM executes on 8 scalar units (32 data

elements)
–  Disadvantage is need to move data explicitly into (small) SM

memory from large shared memory
–  Also have support for gather/scatter from memory and special

functional units (e.g., texture sampling, math ops)
●  Performance measurements for GPU assume data

already in GPU memory (from other GPU computations)
●  Overall performance of GPU (geometric mean) is 2.5X of

CPU (nth root of product of speedups)
–  Why? Because they optimized both CPU and GPU versions of

the kernels
CMSC 714 - Alan Sussman

