


Computational Grids

- Infrastructure for dependable, consistent, pervasive access to high-end compute resources
- Why?
 - Increased compute power to users
 - Demand-driven access to compute power
 - Utilize idle capacity (desktop grids)
 - Sharing of computational results (data grids)

Application areas

- Distributed supercomputing to aggregate compute power
- High throughput desktop grids, volunteer computing
- On-demand computing remote servers, instruments, etc.
- Data intensive computing LHC, SDSS, remote sensing
- Grid users
 - Infrastructure developers
 - Tool developers
 - Application developers various programming models
 - End users of grid-enabled applications
 - System administrators across admin domains
 - CMSC 714 Alan Sussman

Grids (cont.)

• Grid architecture

- End systems individual components
- Clusters mostly homogeneous, larger scale
- Intranet distributed, heterogeneous, limited centralized control
- Internet heterogeneous, no centralized control, security and trust issues, more geographic distribution
- Current status is that grids are now everywhere, for high performance computing applications, for largescale volunteer computing projects
 - but the infrastructure is still somewhat brittle, and has not had as widespread impact on science and other areas as was expected 10-15 years ago
 - CMSC 714 Alan Sussman

Data Grids

- Key issue is accessing, managing, and computing on large, distributed data collections
 - geographic distribution
 - high performance demands
- Key design principles
 - Mechanism neutrality independence from how data is stored, metadata is stored, data transferred, etc.
 - Policy neutrality expose performance-related decisions to users if they want to make them
 - Grid infrastructure compatibility use existing Grid infrastructure (they mean Globus toolkit) for basic services
 - authentication, resource management, resource discovery
 - Information infrastructure uniformity easy access to resource structure and state
 - to enable adaptation to current system conditions

5

CMSC 714 - Alan Sussman

Data Grids (cont.)

Core services

- Storage system abstraction create, destroy, read, write, manipulate *file instances*
 - could be data in a DBMS, or a mass-storage system, or data accessed via an http server
- Data access including 3rd party transfers
- Metadata service to publish and access info about file instances in a uniform way – stored in a metadata catalog
 - structured as a hierarchical, distributed system (LDAP)
- Authentication/authorization via Grid Security Infrastructure (GSI)
- Resource reservation and co-allocation for storage systems and networks
- Performance measurement and instrumentation

• Replica management as a higher level service

- to create and manage file instance copies
- problems addressed include replica selection and data filtering

6

CMSC 714 - Alan Sussman