
CMSC 714
Lecture 15

Lamport Clocks and Eraser

Alan Sussman
(with thanks to Chris Ackermann)

2

Notes

●  Midterm exam moved to April 27
–  sample exam questions posted

●  Research project questions?

CMSC 714 - Alan Sussman

3

Lamport Clocks

●  Distributed systems are inherently concurrent,
asynchronous, and nondeterministic, so executing
programs on multiple machines requires coordination

●  Lamport introduce methods to define an ordering of
events

●  Want to create a partial ordering of events
(instructions, message passing, or whatever)

●  Define a happens before relation: a → b
–  event a happened before event b
–  event a can causally affect event b

CMSC 714 - Alan Sussman 4

Happens Before Relation

1.  If a and b are events in the same process, and a
comes before b, then a → b

2.  If a is sending of a message by one process and b is
the receipt of the same message by another
process, then a → b

3.  If a → b and b → c then a → c (transitivity)

●  Partial Order: Unordered events are concurrent

CMSC 714 - Alan Sussman

5

Logical Clocks

●  Clock Condition: For any events a, b: if a → b then
C<a> < C

●  Holds if C1 and C2 are satisfied:
–  C1. If a and b are events in Process Pi, and a comes before b, then

Ci<a> < Ci
–  C2. If a is the sending of a message by process Pi and b is the

receipt of that message by process Pj, then Ci<a> < Cj
●  Implementation

–  IR1. Each process Pi increments Ci between any two successive
events

–  IR2a. If event a is the sending of a message m by Process Pi, then
the message m contains a timestamp Tm = Ci<a>.

–  IR2b. Upon receiving a message m, process Pj sets Cj greater than
or equal to its present value and greater than Tm.

CMSC 714 - Alan Sussman 6

Total Ordering

●  Partial ordering not always enough

●  Prioritize processes Pi � Pj

●  Total ordering a ⇒ b :

If a is in Pi and b is in Pj, then a ⇒ b iff
–  Ci<a> < Cj
–  Ci<a> = Cj and Pi ≺ Pj

CMSC 714 - Alan Sussman

7

Logical Clocks

●  Issues with physical clocks (clock drift, etc.)
●  For many purposes, it is sufficient to know the order

in which events occurred
●  BUT: Logical clocks cannot be used to order events

outside the system

CMSC 714 - Alan Sussman 8

Strong Clock Condition

●  Approach does not take into account external events

●  Define new set of events L

●  Strong Clock Condition: For any events a, b in L:

if a ⇨ b then C<a> < C

●  Achieve strong clock condition with physical clocks

CMSC 714 - Alan Sussman

9

Physical Clocks
●  Run continuously
●  PC1. Clocks must run at approximately the correct rate
–  ∃k. k << 1 , |dCi(t)/dt-1| < k

●  PC2. Clocks must be synchronized
–  |Ci(t) - Cj(t)| < ε

●  Minimum message delay µ
–  Ci(t+ µ) – Cj(t) > 0

●  Satisfying Strong Clock Condition:
–  IR1: Each event occurs at a precise instant
–  IR2:

•  If Pi sends a message m at physical time t, then m contains
a timestamp Tm = Ci(t).

•  Upon receiving a message m at time t’, process Pj sets Cj(t’)
equal to the maximum of Cj(t’) and (Tm + µm)

CMSC 714 - Alan Sussman 10

Eraser

●  What is the problem?
–  Implementing multi-threaded programs is difficult and error

prone

●  Who cares?
–  Developers (and users) of multi-threaded systems

●  What is the approach?
–  Provide tool support to automatically verify synchronization

CMSC 714 - Alan Sussman

11

Eraser

●  Dynamic data race detection tool
●  Supports only lock-based synchronization
●  Claim: Simpler, more efficient, and more thorough

than approaches based on happens before
●  Lock

–  Synchronization object used for mutual exclusion
–  Only the owner of a lock may release it (not like a

semaphore)

●  Data Race
–  More than 1 thread has read or write access to a variable

without synchronization, and at least one is doing a write

CMSC 714 - Alan Sussman 12

Other Approaches

●  Monitors by Hoare
–  Do not account for dynamically allocated data

●  Static race detection
–  Need many test cases to produce reliable results

●  Race detection based on Happens Before
–  Inefficient since large amount of information is required

CMSC 714 - Alan Sussman

13

Lockset Algorithm
●  First version: Enforces simple locking discipline

–  Each shared variable is protected by at least one lock
●  Problem: Eraser doesn’t know which lock is for which

variables
●  Solution: Infer protection relation from execution history
●  Set C(v) of candidate locks for each shared variable v

–  Holds the locks that have protected a variable during execution
●  Intuition:

–  Every time a thread t accesses a shared variable v it must hold
at least one lock l

●  Algorithm:
–  Initialize C(v) with all locks
–  C(v) := C(v) ∩ locks_held(t)
–  C(v) = {} à issue warning

CMSC 714 - Alan Sussman 14

Improvements

●  Relax locking discipline
●  Initialization: Shared variables initialized w/o holding

lock
–  Algorithm “pauses” until variable is accessed by a second

thread
●  Read-shared data: Variables written during init only

and read-only thereafter
–  No races are reported until a second thread writes to

variable
●  Read-write locks: Multiple readers can access a

shared variable but only one writer at a time.
–  Keep track separately of write locks

CMSC 714 - Alan Sussman

15

States of Memory Locations

Virgin
Shared-
Modified Shared Exclusive

●  Virgin:
–  New data, not referenced

●  Exclusive
–  Accessed by one thread

●  Shared
–  One write and multiple read accesses

●  Shared-Modified
–  Multiple write accesses

CMSC 714 - Alan Sussman 16

Implementation

●  Developed for DIGITAL Unix OS
–  now known as Tru64 UNIX (by HP)

●  Input: Unmodified program binary

●  Output: Instrumented binary that is functionally
identical but includes calls to Eraser

●  Race report:
–  file + line
–  list of stack frames
–  thread ID, memory address, type of access

CMSC 714 - Alan Sussman

17

Maintaining and Representing Lock Sets

●  To maintain C(v)
–  Instrumented each call to storage allocator to init C(v) for

dynamically allocated data
–  Instrument each load/store instruction

●  To maintain lock_held(t)
–  Instrument each lock acquire/release (+ initialize/finalize)

●  Each 32-bit word on heap or global data is possible
shared variable

●  List of lock sets for each memory location inefficient
–  Use hash tables to avoid duplicate lock sets

●  Shared variables represented by Shadow Words
–  30 bits for lockset index (or thread ID in exclusive state)
–  2 bits for state condition

CMSC 714 - Alan Sussman 18

Evaluation

●  Effectiveness
–  Eraser more efficient than manual validation

●  Sensitivity
–  Not sensitive to the number of threads

●  Extension to detecting deadlocks possible

CMSC 714 - Alan Sussman

19

Problems

●  Slows down program by a factor of 10 to 30

●  Removing false positives might be time consuming

CMSC 714 - Alan Sussman 20

Current Status
●  Helgrind implements the Lockset algorithm (current

web page says it implements happens before)
–  http://valgrind.org/docs/manual/hg-manual.html

●  CheckSync implements Eraser for Java
–  http://www.cs.umd.edu/class/spring2004/cmsc433/

checkSync.html

●  Microsoft was working on RaceTrack
–  https://www.microsoft.com/en-us/research/publication/

racetrack-efficient-detection-of-data-race-conditions-via-
adaptive-tracking/

●  Intel Inspector – not clear what algorithm is used
–  https://software.intel.com/en-us/articles/use-intel-parallel-

inspector-to-find-race-conditions-in-openmp-based-
multithreaded-code

CMSC 714 - Alan Sussman

