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Notes 

●  Midterm exam moved to April 27 
–  sample exam questions posted  

●  Research project questions? 
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Lamport Clocks 

●  Distributed systems are inherently concurrent, 
asynchronous, and nondeterministic, so executing 
programs on multiple machines requires coordination 

●  Lamport introduce methods to define an ordering of 
events 

●  Want to create a partial ordering of events 
(instructions, message passing, or whatever) 

●  Define a happens before relation: a → b 
–  event a happened before event b 
–  event a can causally affect event b 
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Happens Before Relation 

1.  If a and b are events in the same process, and a 
comes before b, then a → b 

2.  If a is sending of a message by one process and b is 
the receipt of the same message by another 
process, then a → b 

3.  If a → b and b → c then a → c (transitivity) 

●  Partial Order: Unordered events are concurrent 
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Logical Clocks 

●  Clock Condition: For any events a, b: if a → b then  
C<a>  <  C<b> 

●  Holds if C1 and C2 are satisfied: 
–  C1. If a and b are events in Process Pi, and a comes before b, then 

Ci<a>  <  Ci<b> 
–  C2. If a is the sending of a message by process Pi and b is the 

receipt of that message by process Pj, then Ci<a>  <  Cj<b> 
●  Implementation 

–  IR1. Each process Pi increments Ci between any two successive 
events 

–  IR2a. If event a is the sending of a message m by Process Pi, then 
the message m contains a timestamp Tm = Ci<a>. 

–  IR2b. Upon receiving a message m, process Pj sets Cj greater than 
or equal to its present value and greater than Tm. 
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Total Ordering 

●  Partial ordering not always enough 

●  Prioritize processes Pi � Pj 

●  Total ordering a ⇒ b : 
 
If a is in Pi and b is in Pj, then a ⇒ b iff 
–  Ci<a>  <  Cj<b> 
–  Ci<a>  =  Cj<b> and Pi ≺ Pj 
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Logical Clocks 

●  Issues with physical clocks (clock drift, etc.) 
●  For many purposes, it is sufficient to know the order 

in which events occurred 
●  BUT: Logical clocks cannot be used to order events 

outside the system 
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Strong Clock Condition 

●  Approach does not take into account external events 

●  Define new set of events L 

●  Strong Clock Condition:  For any events a, b in L: 
          
if a ⇨ b then C<a>  <  C<b> 

●  Achieve strong clock condition with physical clocks 
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Physical Clocks 
●  Run continuously 
●  PC1. Clocks must run at approximately the correct rate 
–  ∃k. k << 1 , |dCi(t)/dt-1| < k 

●  PC2. Clocks must be synchronized 
–  |Ci(t) - Cj(t)| < ε

●  Minimum message delay µ
–  Ci(t+ µ) – Cj(t) > 0 

●  Satisfying Strong Clock Condition: 
–  IR1: Each event occurs at a precise instant 
–  IR2: 

•  If Pi sends a message m at physical time t, then m contains 
a timestamp Tm = Ci(t). 

•  Upon receiving a message m at time t’, process Pj sets Cj(t’) 
equal to the maximum of Cj(t’) and (Tm + µm) 
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Eraser 

●  What is the problem? 
–  Implementing multi-threaded programs is difficult and error 

prone 

●  Who cares? 
–  Developers (and users) of multi-threaded systems 

●  What is the approach? 
–  Provide tool support to automatically verify synchronization 
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Eraser 

●  Dynamic data race detection tool 
●  Supports only lock-based synchronization 
●  Claim: Simpler, more efficient, and more thorough 

than approaches based on happens before 
●  Lock 

–  Synchronization object used for mutual exclusion 
–  Only the owner of a lock may release it (not like a 

semaphore)  

●  Data Race 
–  More than 1 thread has read or write access to a variable 

without synchronization, and at least one is doing a write 
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Other Approaches 

●  Monitors by Hoare 
–  Do not account for dynamically allocated data 

●  Static race detection 
–  Need many test cases to produce reliable results 

●  Race detection based on Happens Before 
–  Inefficient since large amount of information is required 
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Lockset Algorithm 
●  First version: Enforces simple locking discipline 

–  Each shared variable is protected by at least one lock 
●  Problem: Eraser doesn’t know which lock is for which 

variables 
●  Solution: Infer protection relation from execution history 
●  Set C(v) of candidate locks for each shared variable v 

–  Holds the locks that have protected a variable during execution 
●  Intuition: 

–  Every time a thread t accesses a shared variable v it must hold 
at least one lock l 

●  Algorithm: 
–  Initialize C(v) with all locks 
–  C(v) := C(v) ∩  locks_held(t) 
–  C(v) = {} à issue warning 
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Improvements 

●  Relax locking discipline 
●  Initialization: Shared variables initialized w/o holding 

lock  
–  Algorithm “pauses” until variable is accessed by a second 

thread 
●  Read-shared data: Variables written during init only 

and read-only thereafter 
–  No races are reported until a second thread writes to 

variable 
●  Read-write locks: Multiple readers can access a 

shared variable but only one writer at a time.  
–  Keep track separately of write locks 
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States of Memory Locations 

Virgin 
Shared-
Modified Shared Exclusive 

●  Virgin: 
–  New data, not referenced 

●  Exclusive 
–  Accessed by one thread 

●  Shared 
–  One write and multiple read accesses  

●  Shared-Modified 
–  Multiple write accesses 
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Implementation 

●  Developed for DIGITAL Unix OS 
–  now known as Tru64 UNIX (by HP) 

●  Input: Unmodified program binary 

●  Output: Instrumented binary that is functionally 
identical but includes calls to Eraser 

●  Race report: 
–  file + line 
–  list of stack frames 
–  thread ID, memory address, type of access 
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Maintaining and Representing Lock Sets 

●  To maintain C(v) 
–  Instrumented each call to storage allocator to init C(v) for 

dynamically allocated data  
–  Instrument each load/store instruction 

●  To maintain lock_held(t) 
–  Instrument each lock acquire/release (+ initialize/finalize) 

●  Each 32-bit word on heap or global data is possible 
shared variable 

●  List of lock sets for each memory location inefficient 
–  Use hash tables to avoid duplicate lock sets 

●  Shared variables represented by Shadow Words 
–  30 bits for lockset index (or thread ID in exclusive state) 
–  2 bits for state condition 
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Evaluation 

●  Effectiveness 
–  Eraser more efficient than manual validation 

●  Sensitivity 
–  Not sensitive to the number of threads 

●  Extension to detecting deadlocks possible 
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Problems 

●  Slows down program by a factor of 10 to 30 

●  Removing false positives might be time consuming 
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Current Status 
●  Helgrind implements the Lockset algorithm (current 

web page says it implements happens before) 
–  http://valgrind.org/docs/manual/hg-manual.html  

●  CheckSync implements Eraser for Java 
–  http://www.cs.umd.edu/class/spring2004/cmsc433/

checkSync.html 

●  Microsoft was working on RaceTrack  
–  https://www.microsoft.com/en-us/research/publication/

racetrack-efficient-detection-of-data-race-conditions-via-
adaptive-tracking/ 

●  Intel Inspector – not clear what algorithm is used 
–  https://software.intel.com/en-us/articles/use-intel-parallel-

inspector-to-find-race-conditions-in-openmp-based-
multithreaded-code 
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