
CMSC 714
Lecture 16

Valgrind and DynInst

Alan Sussman

2

Notes

●  Midterm exam scheduled for Thursday, April 27
–  sample exam questions posted

●  Research project interim report due April 21

3

Valgrind
●  Framework for building dynamic binary analysis tools

–  works on program binaries
–  instrumentation inserted before the program runs
–  provides basic services that a tool writer can use to perform

dynamic analyses
–  basic mechanism is shadow values

●  Shadow values – heavyweight instrumentation
–  basic idea is to maintain a copy of all program state for an

analysis tool to use (and tool can add more state needed for its
analysis)

–  9 requirements, 3 classes
•  shadow state – registers and memory
•  read/write operations – instrument instructions (loads and

stores) and system calls – arguments and return values to/
from registers/memory, and via pointers

•  allocation/deallocation operations – start-up (registers, static
data), system calls (brk, mmap), stack pointer movement
(function call/return), heap (esp. bookkeeping data)

•  transparent execution, but extra output – only effect on
instrumented program is extra side-channel output

4

Valgrind
●  Tool-specific code plugs into Valgrind core

–  to instrument code fragments that the core passes to it
●  Dynamic binary recompilation

–  a tool loads client program, recompiles it a block at a time as the client
program executes within Valgrind

–  core disassembles code block into IR, then tool plug-in instruments it,
then core converts IR back to machine code to execute

•  can deal with dlls, shared libraries, and dynamically generated
code – only problem is self-modifying code

•  dissassemble/resynthesize (D&R), vs. copy/annotate (C&A) – claim
is that D&R better for heavyweight analyses

–  key issue, and reason for difficulty of implementation, is having the tool/
core sharing memory with the (instrumented) client program

●  Events system used to inform tools about system call activities
not directly visible from IR
–  i.e. what state gets changed in the system call

●  One big problem is that thread execution is serialized, to keep
updates to main and shadow memory consistent always
–  not clear how to fix this and allow concurrent thread execution

●  Tool performance (e.g., Memcheck) similar to that of other
equivalent tools

5

DynInst

●  C++ class library for binary static and dynamic
instrumentation
–  lightweight infrastructure for building dynamic analysis tools
–  differs from earlier instrumentation tools because can work on

executing program, and uses machine independent description
of inserted code

●  Insert snippets into one or more client processes
–  at instrumentation points
–  mutator process inserts snippets into the application program,

which was linked with the Dyninst runtime library, either before
or at runtime

●  Implementation for runtime patching uses similar OS
services as a debugger, for controlling activity of another
process
–  control process execution
–  read/write address space

6

DynInst

●  Generate code from snippet calls into machine
language of host machine in the mutator, then copy
into space allocated in application address space
–  use trampoline code – base tramp with pointers to pre and

post code surrounding one relocated instruction from the
point of insertion

–  mini-tramp for pre or post code snippet, to save/restore
registers and set up arguments for snippet function code

•  multiple snippets can be chained at one point
●  Conditional breakpoint example shows power of the

method, and how it can reduce execution cost for
expensive operations by directly inserting code into
the application at runtime

