Data and Computation Reordering

- Goal is to improve performance of **irregular** applications
 - ones with data access patterns not known until runtime
 - includes solving PDEs on unstructured or adaptive grids, n-body problems, etc.
 - in this paper, model the access pattern with an **interaction list**
 that specifies the data elements to access
- Runtime methods to do the same types of optimizations as are done for regular applications
 - ones where data access patterns (often to multi-dimensional arrays) are known at compile-time
 - e.g., loop blocking, interchange, data prefetching
- Methods to reorder data dynamically to improve memory hierarchy behavior
 - improve spatial locality
- Methods to reorder loop iterations
 - typically to improve spatial and temporal locality

Midterm exam Thursday, April 27
- on readings through next Thursday

Group Project interim report due April 21
MemSpy

- A tool for finding memory performance bottlenecks in serial and parallel programs
 - provides detailed view of cache misses
 - and both code- and data-centric views of the causes for cache misses
- **Goals are to**
 - separately report processor and memory time, to find memory bottlenecks
 - link bottlenecks back to data objects, not just code segments
 - provide memory stats detailed enough to enable programmer to fix bottlenecks
 • why did the cache misses occur?
- **High overhead solution**
 - use simulation to track cache behavior (no hardware support required)
 - uses Tango simulation/tracing system
 • instrument application via pre-processing, then trace every memory reference with a call to the memory simulator, which then calls MemSpy to compute aggregate statistics on cache events (hits, misses, replacements, etc.)

MemSpy

- **Presents code and data oriented statistics**
 - code and data divided into logical units – code segments and data bins
 - group statistics into each bin
 - code segment is a function/procedure – just need to trace function entry/exit
 - data bin can be a single object, or a group of objects
 • a bin is all memory ranges allocated at same point in source code with identical call paths (same stack)
- **Data oriented statistics divided into 3 categories**
 - compulsory misses (first use)
 - replacements (capacity misses, conflict misses)
 - invalidations (from cache coherence misses in an SMP)
- **Code examples show the utility of data centric view, and breaking down misses into categories**
- **Performance of instrumented code is very poor, but claim is that it could be improved (never done?)**
 - real problem is that multiprocessor execution is simulated by Tango via interleaving processes on a single processor, so does not scale
 - conclusion is that need hardware trace facility on a multiprocessor