Runtime Parallelization

Gary Jackson (with mods by A. Sussman)

G. Agrawal, A. Sussman, and). Saltz, “An Integrated Runtime and Compile-time
Approach for Parallelizing Structured and Block Structured Applications”, IEEE
Transactions on Parallel and Distributed Computing, 6(7), 1995.

S.J. Fink, S.R. Kohn, and S.B. Baden, “Efficient Run-time Support for Irregular Block-
Structured Applications”, Journal of Parallel and Distributed Computing, 50(1), 1998.

Outline

Overview
® Compiler-driven: Multiblock Parti

® Library-driven: KeLP

Conclusion

Notes

® Group project interim reports due Friday,
April 21

® Midterm exam on April 27

Overview

® Writing good parallel programs for
distributed memory systems is hard.

® Idea: abstraction on top of message passing
to get results

® We can do this where communication is
regular: block-structured applications

® Trade off: reduced performance for
reduced effort

Multiblock Parti Runtime Support

® Provide High Performance Fortran-like
language enhancements to support block-
structured applications ® Schedule a regular section move

® Regular_Section_Move Sched

® Treat things statically, where we can ® Accommodates block, cyclic, and block-
cyclic distributions when the bounds &

. . .
Like Fortran D, High Performance strides are known at run-time

Fortran, etc.
® Overlap_Cell_Fill_Sched: schedule moves

® Use run-time support where we can't for overlap / ghost cells

establish compile-time bounds

Compiler Support Static Analysis

® Done on for_all loop parameters

® Additional HPF-like directives o :
Categorize one of three ways

® Static analysis for data distribution ® No communication necessary
® Insert calls for runtime workload ® Cony overla resions
partitioning based on data distribution PY pree

® Copy regular sections

Experiment: Overhead

Extra time from library
calls and schedule
building isn't too bad

130.00
120,00
110,00

100.00 /-
90.00 |
80.00
70.00
60.00
5000 ~

<o.ook
1.00

Set I

Set II : Communication and copying

2.00

3.00 400

>

1

5.00

Kilobytes per iteration

Communication (Max. message aggregation)

Set 1I1: Communication, copying and schedule building

Experiment:

Multigrid Code

® Within 10% of hand-
parallelized code

No. Compiler
of First
Proc. Iteration
8 4.80
16 384
32 3.03

Compiler: By Hand:
Per- By Hand: Per-
subsequent First subsequent
Iteration Iteration Iteration
—]
229 4.60 2.14
138 3.41 1.35

.95 248 .88

Fig. 7. Semicoarsening multigrid performance (sec).

Experiment:
Multiblock Code

One Block: 49 x 9 x 9 Mesh (50 Iterations)

® Within 20% of hand-
parallelized F77

Difference between
compiler-parallelized &
hand-parallelized F90 is
mostly in computing loop
bounds and searching for
previously-used schedules

Hand Hand
Number of Compiler Parallelized Parallelized
Processors Parallelized F90 F77
4 6.99 6.88 6.20
8 4.17 4.06 4.00
16 2.47 235 2.28
32 1.55 1.45 141
5. Performance comparison for small mesh, one block (sec).
Two Blocks: 49 x 17 x 9 Mesh (50 Iterations)
Hand Hand
Number of Compiler Parallelized Parallelized
Processors Parallelized F90 F77
8 7.49 6.69 6.17
16 4.64 4.07 4.03
32 2.88 232 230

ig. 6. Performance comparison for larger mesh, two blocks (sec).

Experiment:
Compiler Optimizations

Performance stinks if
schedules are not saved
(Version 1)

Hand-implemented reuse
improves over runtime reuse
(I vs. 1)

Un-implemented optimization
for loop-bounds in
subroutines also improves
(Version V)

Two Blocks: 49 x 9 x 9 Mesh (50 iterations)
No. Compiler | Compiler | Compiler | Compiler
of Version Version Version Version Hand
Proc. 1 11 I 1V F90
4 13.45 7.63 7.41 7.33 6.79
8 15.51 478 4.58 4.54 4.19
16 11.72 285 271 262 239
32 8.01 1.85 1.79 1.66 1.47
Version I: Runtime Library does not save schedules
Version 1I: Runtime Library saves schedules
Version [1I: Schedule reuse implemented by hand

Version IV: Loop bounds reused within a procedure

Fig. 8. Effects of various optimizations (sec).

KelLP

® Library for parallelization abstraction

® Works for block-structured programs with
the following overall structure:

for i = 1 to num iters
data motion;
for_all ...
parallel computation;
end for_all
end for

Data motion
abstractions

Motion plan
(MotionPlanD), list of
block moves

® MoverD, actor that
executes the moves
specified in a motion plan

® Plan block moves

® Can extend for move
+ operation

FIG. 4. The MotionPlan encodes a set of block copy operations between grids.

Geometric Structure
Abstractions

Points (PointD), Regions (RegionD)
Mapping regions to processors (FloorPlanD)
Grid (GridD), indexed by a region

Array of grids (XArrayD), structure
represented by a FloorPlanD

Region Calculus

Implementation

All processors store a locally relevant part
of the motion plan

Mover performs non-blocking
communication in the data motion step of
the outer loop

® Avoiding unnecessary buffer-packing when
possible

Experiment:

Implementation ,
Conventional
® Mover could be extended to move things a APPI icationS
different way
® Utilize underlying transport ® Multigrid solver, FFT, matrix multiply
® Exploit MPI differently (all-to-all, for ® KeLP did no more than 10% worse than
instance) existing code
® Move + operation ® Sometimes did better
Experiment: Jacobi Experiment: Jacobi

® Three KeLP versions vs. Hand-parallelized .
version by manipulating the motion plan Improvements do show benefit

[) . .
. Just use fillpatch as necessary Great benefit for using contiguous faces

® Hand-coded uses inter-loop optimization

ll. Eliminate unnecessary corner overlap cells
out of the scope of KelP

lll. Use contiguous faces where possible

More Recent

Developments
® Global Arrays

® Library with explicit shared memory
programming model

® Programmer dictates locality
® A++/P++ (part of Overture from LLNL)
® Fortran-like arrays

® P++ provides a HPF-like interface through
library

Overall Conclusion

® We can get close to hand-coded
performance with these systems

® Are they easier to use?

