
Runtime Parallelization

G. Agrawal, A. Sussman, and J. Saltz, “An Integrated Runtime and Compile-time
Approach for Parallelizing Structured and Block Structured Applications”, IEEE
Transactions on Parallel and Distributed Computing, 6(7), 1995.

S.J. Fink, S.R. Kohn, and S.B. Baden, “Efficient Run-time Support for Irregular Block-
Structured Applications”, Journal of Parallel and Distributed Computing, 50(1), 1998.

Gary Jackson (with mods by A. Sussman)

Notes
•  Group project interim reports due Friday,

April 21

•  Midterm exam on April 27

•  Overview

•  Compiler-driven: Multiblock Parti

•  Library-driven: KeLP

•  Conclusion

Outline
• Writing good parallel programs for

distributed memory systems is hard.

•  Idea: abstraction on top of message passing
to get results

• We can do this where communication is
regular: block-structured applications

•  Trade off: reduced performance for
reduced effort

Overview

•  Provide High Performance Fortran-like
language enhancements to support block-
structured applications

•  Treat things statically, where we can

•  Like Fortran D, High Performance
Fortran, etc.

•  Use run-time support where we can't
establish compile-time bounds

Multiblock Parti

•  Regular_Section_Move_Sched

•  Schedule a regular section move

•  Accommodates block, cyclic, and block-
cyclic distributions when the bounds &
strides are known at run-time

•  Overlap_Cell_Fill_Sched: schedule moves
for overlap / ghost cells

Runtime Support

•  Additional HPF-like directives

•  Static analysis for data distribution

•  Insert calls for runtime workload
partitioning based on data distribution

Compiler Support Static Analysis

•  Done on for_all loop parameters

•  Categorize one of three ways

•  No communication necessary

•  Copy overlap regions

•  Copy regular sections

•  Extra time from library
calls and schedule
building isn't too bad

Experiment: Overhead
Experiment: �

Multiblock Code
•  Within 20% of hand-

parallelized F77

•  Difference between
compiler-parallelized &
hand-parallelized F90 is
mostly in computing loop
bounds and searching for
previously-used schedules

Experiment: �
Multigrid Code

•  Within 10% of hand-
parallelized code

Experiment: �
Compiler Optimizations

•  Performance stinks if
schedules are not saved�
(Version I)

•  Hand-implemented reuse
improves over runtime reuse
(II vs. III)

•  Un-implemented optimization
for loop-bounds in
subroutines also improves�
(Version IV)

•  Library for parallelization abstraction

• Works for block-structured programs with
the following overall structure: �
�
for i = 1 to num_iters  
 data motion;  
 for_all ...  
 parallel computation;  
 end for_all  
end for

KeLP

•  Points (PointD), Regions (RegionD)

•  Mapping regions to processors (FloorPlanD)

•  Grid (GridD), indexed by a region

•  Array of grids (XArrayD), structure
represented by a FloorPlanD

•  Region Calculus

Geometric Structure
Abstractions

•  Motion plan
(MotionPlanD), list of
block moves

•  MoverD, actor that
executes the moves
specified in a motion plan

•  Plan block moves

•  Can extend for move
+ operation

Data motion
abstractions

•  All processors store a locally relevant part
of the motion plan

•  Mover performs non-blocking
communication in the data motion step of
the outer loop

•  Avoiding unnecessary buffer-packing when
possible

Implementation

•  Mover could be extended to move things a
different way

•  Utilize underlying transport

•  Exploit MPI differently (all-to-all, for
instance)

•  Move + operation

Implementation

•  Multigrid solver, FFT, matrix multiply

•  KeLP did no more than 10% worse than
existing code

•  Sometimes did better

Experiment:
Conventional
Applications

•  Three KeLP versions vs. Hand-parallelized
version by manipulating the motion plan

I.  Just use fillpatch as necessary

II.  Eliminate unnecessary corner overlap cells

III. Use contiguous faces where possible

Experiment: Jacobi Experiment: Jacobi

•  Improvements do show benefit

•  Great benefit for using contiguous faces

•  Hand-coded uses inter-loop optimization
out of the scope of KeLP

•  Global Arrays

•  Library with explicit shared memory
programming model

•  Programmer dictates locality

•  A++/P++ (part of Overture from LLNL)

•  Fortran-like arrays

•  P++ provides a HPF-like interface through
library

More Recent
Developments

• We can get close to hand-coded
performance with these systems

•  Are they easier to use?

Overall Conclusion

