
CMSC 714 
Lecture 20 
Parallel I/O 

Alan Sussman 

2 

Notes 

●  Exam on Thursday 
●  Group Project presentations next Thursday and 

following Tuesday 
–  final report due Friday, May 12 

 

3 

IBM GPFS 
●  Designed to support high throughput parallel 

applications, including multimedia 
–  well suited for scientific computations 
–  still used in many of Top 500 supercomputers 

●  Main idea is to use parallel I/O to increase 
performance and scale to large configurations 
–  increase bandwidth by spreading reads and writes (even to a 

single file) across multiple disks, especially for sequential 
access 

–  avoid the “one file per parallel process” model, or sending all 
I/O through one node 

–  use internal high performance switch, plus separate I/O 
nodes, for I/O from parallel processes running on nodes 

–  files can be both striped across multiple I/O nodes, and 
across multiple disks in each I/O node 

4 

IBM GPFS 

●  Each node runs a demon (mmfsd) to provide I/O services 
–  one demon runs a metanode service, to serve file metadata (ownership, 

permissions), and inode/directory updates 
–  one demon runs a stripe group manager, to keep track of available disks 
–  a token manager to synchronize concurrent access to files, maintain 

consistency across caches 
–  each application node demon mounts a file system and performs file 

accesses (through switch, to I/O nodes that have the disks with the data) 
●  Client-side caching 

–  inside Virtual Shared Disk (VSD) layer in kernel (server is on I/O nodes) 
–  pagepool in each application node’s memory 
–  read-ahead discovers sequential and constant stride access patterns 
–  write behind allows application to continue after data copied into pagepool – 

cost is extra copy to pagepool 
●  Experiments show that GPFS scales well to very high absolute 

performance for sequential accesses 
–  need big transfer sizes for non-sequential accesses to get decent 

performance – use MPI-IO to aggregate (collective I/O) 
–  1 server can handle up to maybe 6 clients – this is technology dependent 

(switch, disks, processors) 



5 

Active Disks 

●  Goal is to move the computation to the data, by offloading 
processing to disk resident processors 

●  Motivation is that even fast host processor will be unable 
to keep many disks busy if it’s doing any serious 
processing of the data 
–  you say MapReduce, but why not do MapReduce at the disk? 
–  in later work, just attach the right number of disks to a host 

(technology dependent), and do processing in host 
●  Stream-based programming model 

–  disklets that read from one or more input streams, write to one 
or more output streams 

–  disklets configured and controlled from host, and have limited 
capabilities, to protect again errors or malicious code 

•  read data into fixed sized buffers (chunk at a time) 
•  no dynamic memory allocation 
•  I/O ops initiated from host program 

6 

Active Disks 
●  Applications include data warehousing, image processing, 

satellite data processing, … 
–  examples of how to write disklets given for all of those 
–  performance comparison against host only programs with 

conventional disks 
–  not completely fair, since the Active Disk implementations use 

processing power from multiple disk processors 
•  but each disk processor is less powerful 

–  simulation-based experiments, but fairly detailed, accurate 
simulations – used multiple datasets, quite large for the time, 
data striped in large chunks across disks (256KB) 

●  Experiments show that Active Disks scales well with more 
disks, performs better than conventional architecture when 
significant processing on data is required 
–  puts much less stress on network between disks and host than 

conventional architecture 
–  host can become a bottleneck when used for collecting and 

redistributing data from multiple disks 


