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Radke1, Edward Seidel1, and John Shalf3

1 Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,
Am Mühlenberg 1, 14476 Golm, Germany

{goodale, allen, lanfer, tradke, eseidel}@aei.mpg.de
2 Departament de F́ısica, Universitat de les Illes Balears

E-07071 Palma de Mallorca, Spain
jmasso@gridsystems.com

3 Lawrence Berkeley National Laboratory,
Berkeley, CA

jshalf@lbl.gov

Abstract. We describe Cactus, a framework for building a variety of
computing applications in science and engineering, including astrophysics,
relativity and chemical engineering. We first motivate by example the
need for such frameworks to support multi-platform, high performance
applications across diverse communities. We then describe the design of
the latest release of Cactus (Version 4.0) a complete rewrite of earlier
versions, which enables highly modular, multi-language, parallel appli-
cations to be developed by single researchers and large collaborations
alike. Making extensive use of abstractions, we detail how we are able
to provide the latest advances in computational science, such as inter-
changeable parallel data distribution and high performance IO layers,
while hiding most details of the underlying computational libraries from
the application developer. We survey how Cactus 4.0 is being used by
various application communities, and describe how it will also enable
these applications to run on the computational Grids of the near future.

1 Application Frameworks in Scientific Computing

Virtually all areas of science and engineering, as well as an increasing number of
other fields, are turning to computational science to provide crucial tools to fur-
ther their disciplines. The increasing power of computers offers unprecedented
ability to solve complex equations, simulate natural and man-made complex
processes, and visualise data, as well as providing novel possibilities such as new
forms of art and entertainment. As computational power advances rapidly, com-
putational tools, libraries, and computing paradigms themselves also advance.
In such an environment, even experienced computational scientists and engi-
neers can easily find themselves falling behind the pace of change, while they
redesign and rework their codes to support the next computer architecture. This
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rapid pace of change makes the introduction of computational tools even more
difficult in non-traditional areas, e.g., social arts and sciences, where they may
potentially have the most dramatic impact.

On top of this rapidly changing background of computation, research and
engineering communities find themselves more and more dependent on each
other as they struggle to pull together expertise from diverse disciplines to solve
problems of increasing complexity, e.g., simulating a supernova or the Earth’s
climate. This creates a newfound need for collaborative computational science,
where different groups and communities are able to co-develop code and tools,
share or interchange modules and expertise, with the confidence that everything
will work. As these multidisciplinary communities develop ever more complex
applications, with potentially hundreds or thousands of modules and parame-
ters, the potential for introducing errors, or for incorrectly using modules or
setting parameters, also increases. Hence a software architecture that supports a
wide range of automated consistency checking and multi-architecture verification
becomes essential infrastructure to support these efforts.

Application developers and users also need to exploit the latest computa-
tional technologies without being exposed to the raw details of their implemen-
tation. This is not only because of the time needed to learn new technologies,
or because their primary interest is in what the application itself can do, and
not how it does it, but also because these technologies change rapidly; e.g. time
invested in learning one technology for message passing is largely wasted when a
developer has to learn the next. What the developer really needs is an abstracted
view of the operations needed for data distribution, message passing, parallel
IO, scheduling, or operations on the Grid [1] (see section 16.5), and not the
particular implementation, e.g., a particular flavour of MPI, PVM, or some fu-
ture replacement. The abstract concept of passing data between processors does
not change over time, even though a specific library to do it will. A properly
designed application framework with suitable abstractions could allow new or
alternate technologies, providing similar operations, to be swapped in under the
application itself. There is a great need for developing future-proof applications,
that will run transparently on today’s laptops as well as tomorrow’s Grid.

At the same time, many application developers, while recognising the need for
such frameworks, are reluctant to use “black box”, sealed packages over which
they have little control, and into which they cannot peer. Not only do some
application developers actually want to see (perhaps some) details of different
layers of the framework, in some cases they would like to be able to extend them
to add functionality needed for their particular application. Such transparency is
nearly impossible to provide through closed or proprietary frameworks without
resorting to excessively complex plug-in SDKs. For this reason, freely available,
open source tools are preferred by many communities (see, for example, Linux!).
Source code is available for all to see, to improve, and to extend; these improve-
ments propagate throughout the communities that share open source tools.

The idea of open source tools, once accepted by one segment of a community,
tends to be contagious. Seeing the benefits, application developers making use
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of such open tools are often inclined to make their own modules freely available
as well, not only in the computational science areas, but also for modules spe-
cific to research disciplines. In the computational science disciplines, modular
components that carry out specific tasks are increasingly able to inter-operate.
Developing application components for, or in, one framework makes it easier to
use them with another framework. This is a particular goal of the “Common
Component Architecture” [2], for example. As another example, we describe
below application modules developed for numerical relativity and astrophysics;
a growing number of scientists in this domain make use of the Cactus frame-
work [3], and many of them make their application specific modules available
to their community. Not only does this encourage others to share their codes,
it raises the overall quality; knowing modules will become public increases the
robustness of the code, the accompanying documentation, and the modularity.

For all of these reasons, and more that we touch on below, open, modular,
application frameworks that can both hide computational details, and enable
communities to work together to develop portable applications needed to solve
the complex problems in their disciplines, are becoming more and more impor-
tant in modern computational science. This will become particularly true as
the Grid, described below, becomes a reality [1]. “Grid-enabling frameworks”
will be crucial if application scientists and engineers are to make use of new
computational paradigms promised by the Grid [4].

2 Cactus as an Application Framework

We have motivated various general reasons why application frameworks are
needed, and in the rest of this paper we describe a specific example. The pro-
gramming framework Cactus [5,6], developed and used over a number of years,
was designed and written specifically to enable scientists and engineers to per-
form the large scale simulations needed for their science. From the outset, Cactus
has followed two fundamental tenets: respecting user needs and embracing new
technologies. The framework and its associated modules must be driven from
the beginning by user requirements. This has been achieved by developing, sup-
porting, and listening to a large user base. Among these needs are ease of use,
portability, the abilities to support large and geographically diverse collabora-
tions, and to handle enormous computing resources, visualisation, file IO, and
data management. It must also support the inclusion of legacy code, as well as
a range of programming languages. It is essential that any living framework be
able to incorporate new and developing, cutting edge computation technologies
and infrastructure, with minimal or no disruption to its user base. Cactus is
now associated with many computational science research projects, particularly
in visualisation, data management, and the emerging field of Grid computing [7].

These varied needs for frameworks of some kind have long been recognised,
and about a decade ago the US NSF created a funding program for “Grand
Challenges” in computational science. The idea was to bring computer and com-
putational scientists together with scientists in specific disciplines to create the
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software needed to exploit large scale computing facilities to solve complex prob-
lems. This turned out to be a rather difficult task; in order to appreciate the
evolution of attempts to tackle this problem, and the maturity of current solu-
tions, it is instructive to review a bit of history before plunging directly into the
present design of Cactus 4.0.

Like many of these NSF Grand Challenge projects, a particular project called
the “Black Hole Grand Challenge Alliance”, aimed to develop a “Supertoolkit”
for the numerical relativity community to solve Einstein’s equations for the study
collisions of black holes. The thought was that, as these equations are so complex,
with equations of many types (e.g., hyperbolic, elliptic, and even parabolic), a
properly designed framework developed to solve them would also be a powerful
tool in many fields of science and engineering. (This has turned out to be true!)
A centrepiece of this toolkit was, in it simplest description, a parallelisation
software known as DAGH [8] (which has now evolved into a package called
GrACE [9]), that would allow the physicist to write serial Fortran code that
could be easily parallelised by using the DAGH library.

At the same time, a series of independent parallel codes were developed to
solve Einstein’s equations, with the expectation that they would later make use of
DAGH for parallelism. However, some of these codes, notably the “G-code” [10],
took on a life of their own, and became mini-frameworks (in Fortran!) them-
selves, evolving into workhorses for different collaborations within the project.
As the codes and collaborations grew, it became clear that the original designs
of these codes needed major revision. A prototype framework, naturally called
“The Framework” [11], was designed and developed by Paul Walker at the Max
Planck Institute for Gravitational Physics (AEI), with the idea that different
physics codes could be plugged in, like the G-code and others, and that it would
be an interface to DAGH to provide parallelism.

Learning from this experiment, Paul Walker and Joan Masso began to de-
velop Cactus in January 1997. Cactus 1.0 was a re-working of the Framework for
uni-grid applications using a simple parallel uni-grid driver as a temporary re-
placement for DAGH. In Cactus there were two types of object, the “flesh”, a core
component providing parameter parsing, parallelisation, and IO, and “thorns”
which are optional modules compiled in. In October 1997 Cactus 2.0 was re-
leased, providing for the first time the ability to dynamically pick which routines
were run at run-time, and some ability to order them, this ability removed the
necessity of modifying the flesh to support new thorns. In these early versions
of Cactus all thorns received all variables defined for a simulation; Cactus 3.0
removed this necessity, further enhancing the modularity.

Cactus became the major workhorse for a collaboration of numerical rela-
tivists spanning several large projects in Europe and the US. This community
requires very large scale, parallel computational power, and makes use of com-
putational resources of all types, from laptops for development to heavy-duty
production simulations on virtually every supercomputing architecture, includ-
ing Linux clusters, “conventional” supercomputers (e.g., SGI Origins or IBM



Cactus Framework 5

SP systems), and Japanese vector parallel machines. Hence complete portability
and very efficient parallel computation and IO are crucial for its users.

Lessons learnt through its heavy use in this community led to the develop-
ment of a still more modular and refined version of Cactus, Cactus 4.0, now
the flesh contains almost no functionality; anything can be implemented as a
thorn, not just physics routines, but all computational science layers. These
computational science thorns implement a certain function, say message pass-
ing, hydrodynamics evolution, or parallel IO, and are interchangeable; any thorn
that implementing a given function can be interchanged with any other one. For
example, different “driver layer” thorns (see section 10) that provide message
passing, can be implemented and interchanged, and can be written using any
message passing library; properly written applications that make use of Cactus
can use any of them without modification. Entire software packages, such as
GrACE for parallelism, PETSc [12] for linear solvers, and others, can be made
available for Cactus users through thorns that are designed to connect them.
Hence, Cactus should be thought of as a Framework for conveniently connecting
modules or packages with different functionality, that may have been developed
completely outside of Cactus. In principle, Cactus can accommodate virtually
any packages developed for many purposes, and it is very powerful. Moreover,
while earlier versions of Cactus were limited in the number of architectures they
supported (T3E, IRIX, OSF, Linux, NT), the community’s need for portabil-
ity lead to a complete redesign of the make system to enhance portability and
reduce compilation times, and now Cactus compiles on practically any architec-
ture used for scientific computing, and the make system, which is described in
section 6 is designed to make porting to new architectures as easy as possible.
These points and others will be developed in depth in the sections below.

Cactus 4.0 has been developed as a very general programming framework,
written to support virtually any discipline. It has been developed through a
long history of increasingly modular and powerful frameworks, always aimed at
supporting existing communities. Hence it is by now a very mature, powerful,
and most importantly, widely used framework; its design has been completely
derived from the needs of its users, through both careful planning and much
trial, error, and redesign. The first official release of the Cactus Computational
Toolkit [13], which builds on the Cactus flesh to provide standard computational
infrastructure is released along with Cactus 4.0, as well as application specific
toolkits. The success of the Cactus approach is borne out by the wide use of
Cactus not only by the numerical relativity community in five continents, but
also its emerging adoption in other fields such as climate modelling, chemical
engineering, fusion modelling, and astrophysics. In the next sections, we detail
the design and capabilities of Cactus 4.0.

Note that Cactus is not an application in itself, but a development envi-
ronment in which an application can be developed and run. A frequent mis-
interpretation is that one “runs Cactus”, this is broadly equivalent to stating
that one “runs perl”; it is more correct to say that an application is run within
the Cactus framework.
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3 Design Criteria for Cactus 4.0

In reviewing previous versions of Cactus and other codes while designing the
new Cactus framework, it became clear that the new framework had to meet
some wide ranging design criteria.

It must be able to run on a wide range of different machines, so requires
a flexible and modular make system. Moreover people must be able to use the
same source tree to build executables for different architectures or with different
options on the same architecture without having to make copies of the source
tree. The make system must be able to detect the specific features of the machine
and compilers in use, but must also allow people to add configuration informa-
tion that cannot otherwise be auto-detected in a transparent and concise way –
without having to learn new programming languages.

Similarly it should be easy to add new modules, and as much functionality as
possible should be delegated to modules rather than the core. Data associated
with individual modules should exist in separate name spaces to allow indepen-
dently developed modules to co-exist without conflict. Functionally equivalent
modules should be inter-changeable without other modules which use or depend
on them noticing the exchange; many such modules should be able to be com-
piled into the executable at once and the desired one picked at program startup.

A core requirement is to provide transparent support for parallelism. The
framework should provide abstractions for distributed arrays, data-parallelism,
domain decomposition and synchronisation primitives. Furthermore, the prim-
itives used to manage the parallelism must be minimal and posed at a high
enough level of abstraction so as not to be tedious to use or to expose system
architecture or implementation dependencies. The framework must be able to
trivially build applications that work in uniprocessor, SMP, or MPP environ-
ments without code modification or placement of explicit conditional statements
in their code to account for each of these execution environments. If the pro-
grammer wishes to build a serial implementation on a multiprocessor platform
for testing purposes, the framework must support that build-time choice.

Another important class of modules is those responsible for input and output.
There are many different file formats in use, and the framework itself should not
dictate which is used. Nor should other modules be unnecessarily tied to any
particular IO module – as new IO modules are developed people should be able
to access their functionality without modification to existing code.

In past versions of Cactus it was possible to set input parameters to values
which were meaningless or, in the case of keyword parameters, to values not
recognised by any module. This is obviously undesirable and should be picked
up when the parameter file is read.

There are many frameworks (for a review, see [14]), however most of them
require a new code to be written to fit within the framework, and often restrict
the languages which can be used. One design criteria was to be able to sup-
port legacy codes, and, in particular, to support the large number of codes and
programmers who use FORTRAN 77.
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Another criterion was to be able to allow applications using the framework
to utilise features such as parallelism, adaptive mesh refinement (AMR) and out
of core computation without having to modify their code, as long as their code
is structured appropriately.

All the above requirements can be summed up in saying that Cactus must be
portable and modular, should abstract the interfaces to lower-level infrastruc-
ture as much as possible, but be easy to use and capable of supporting legacy
codes. By themselves these requirements would lead to something with cleaner
interfaces than older versions of Cactus, however we also chose to design the
framework to be as flexible and future proof as possible. The framework should
allow the modules to provide access to new technologies, such as those to provide
collaborative working, or facilities emerging from the Grid community, while at
the same time the framework should not come to depend upon such technolo-
gies. This list is by no means a complete list of requirements, however these are
the more important ones coming out of our experiences with earlier versions of
cactus and our desire for the framework to be as future-proof as possible.

4 Structure

The code is structured as a core – the ‘flesh’ – and modules which are referred
to as ‘thorns’.

The flesh is independent of all thorns and provides the main program, which
parses the parameters and activates the appropriate thorns, passing control to
thorns as required. It contains utility routines which may be used by thorns to
determine information about variables, which thorns are compiled in or active,
or perform non-thorn-specific tasks. By itself the flesh does very little apart from
move memory around, to do any computational task the user must compile in
thorns and activate them at run-time.

Thorns are organised into logical units referred to as ‘arrangements’. Once
the code is built these have no further meaning – they are used to group thorns
into collections on disk according to function or developer or source.

A thorn is the basic working module within Cactus. All user-supplied code
goes into thorns, which are, by and large, independent of each other. Thorns
communicate with each other via calls to the flesh API, plus, more rarely, custom
APIs of other thorns.

The connection from a thorn to the flesh or to other thorns is specified in
configuration files which are parsed at compile time and used to generate glue
code which encapsulates the external appearance of a thorn.

When the code is built a separate build tree, referred to as a ‘configuration’ is
created for each distinct combination of architecture and configuration options,
e.g. optimisation or debugging flags, compilation with MPI and selection of MPI
implementation, etc. Associated with each configuration is a list of thorns which
are actually to be compiled into the resulting executable, this is referred to as a
‘thornlist’.
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At run time the executable reads a parameter file which details which thorns
are to be active, rather than merely compiled in, and specifies values for the
control parameters for these thorns. Non-active thorns have no effect on the
code execution. The main program flow is shown in figure 1.

Read Parameter File

Activate Thorns

Initialise Scheduler

Initialise Simulation

Evolve Simulation

Terminate SimulationTidy Up

Flesh Driver

CCTK_Startup

CCTK_RecoverParameters

[Recovering From Checkpoint]

[Not Recovering
From Checkpoint]

Fig. 1. The main flow of control in the Cactus Framework. The flesh initialises
the code, then hands control to the driver thorn (see section 10). The actions in
the driver swimlane are detailed in figures 2, 3, and 4.

5 Code Management and Distribution

Since the code is developed and maintained by a geographically dispersed team
of people, a well-defined code management system is necessary. The Cactus de-
velopment follows clearly defined coding guidelines and procedures which are set
out in the Cactus Maintainers’ Guide [15].

A central component of these procedures is the use of CVS [16] to manage re-
visions in the flesh and the thorns. The tree-like file layout structure is purposely
designed to enable each thorn or arrangement to belong to entirely independent
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CCTK_ParamCheck

CCTK_BaseGrid

CCTK_Initial

CCTK_CPInitial

CCTK_PostRecoverVariables

CCTK_RecoverVariables CCTK_PostInitial

CCTK_PostStep

CCTK_Analysis

Output Data

Terminate Simulation

Continue Simulation

[Parameter Combinations Valid]

[Invalid Parameter Combinations]

[Not Recovering From Checkpoint]
[Recovering From Checkpoint]

Fig. 2. Initialisation action diagram (corresponding to the initialise simulation
action in figure 1). All activities prefixed with “CCTK ” are schedule bins (see
section 9)

CCTK_Checkpoint

CCTK_PreStep

CCTK_Evol

CCTK_PostStep

CCTK_Analysis

Check Termination
Condition

Output Data

[Simulation Over]

[Continue Simulation]

Update Time 
and

Rotate Timelevels

Fig. 3. Evolution action diagram (corresponding to the evolve simulation action
in figure 1). All activities prefixed with “CCTK ” are schedule bins (see section 9)
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CCTK_Terminate CCTK_Shutdown

Fig. 4. Termination action diagram (corresponding to the terminate simulation
action in figure 1). All activities prefixed with “CCTK ” are schedule bins (see
section 9)

CVS repositories with their own access control, branching policies. The Cactus
flesh provides simplified interfaces to checked-out and assembled together these
thorns into a working application.

The primary code distribution method is via CVS, for which the several wrap-
per scripts are provided to automate downloading the flesh and user-defined lists
of thorns. Thorns are not only maintained and distributed at the central Cactus
repository, but by different authors who want to make their thorns available to
others through their own CVS repositories. The Cactus download scripts can
take a thornlist with some embedded comments and retrieve thorns from all the
appropriate CVS repositories. Additionally compressed tar files of the flesh and
thorns can be downloaded from the Cactus web-site.

Documentation, including an FAQ, Users and Maintainers Guide, as well as
Thorn Guides for different collections of thorns, are distributed with the Cactus
flesh and thorns, as well as from the Cactus Home Page [6,15,13].

6 A Portable and Modular Make System

The Cactus make system is a two stage process. First of all a “configuration”
is created, encapsulating machine-specific information and also user defined
choices; the user may define many configurations, each for specific purposes, e.g.
for use on different architectures, to use particular parallel libraries, to include
debugging information, to be compiled with specific compilers, etc.

Once a configuration has been created, a thornlist is created for the configu-
ration, and the flesh and thorns for this configuration are built. If the thornlist or
source files for a thorn are modified, the appropriate files for this configuration
and its executable may be rebuilt.

GNU Make is used to avoid incompatibilities in the make program across
architectures. This is freely available on a large number of platforms.

The Cactus make system has shown itself to work on a large number of Unix
platforms, including SGI IRIX, IBM AIX (e.g. SP systems), Linux (IA32, IA64,
Alpha, PowerPC, IPAQ, Playstation), Apple OSX, Compaq OSF, Cray Unicos
(T3E, SV1, etc), Sun Solaris, Hitachi SR800, Fujitsu VPP, OpenBSD, and NEC
SX-5; in principle Cactus should compile on any UNIX-like platform with at most
minimal effort. To date the only non-Unix platform used has been Windows,
where the Cygwin [17] environment is used to provide a Unix-like environment;
the resulting code is, however, independent of Cygwin if non-Cygwin compilers
are used.
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Note that unlike a library or system utility, Cactus is not “installed”. Cur-
rently each user has a copy of the sources and generates their own configurations
based upon their individual needs and preferences.

6.1 Creating a Configuration

In order to support as wide a range of computers as possible, GNU Autoconf [18]
is used to detect specific features of compilers and libraries. However not all such
things can be easily detected, and it was deemed important that in those cases a
user compiling on a previously unsupported architecture should not need to learn
detailed shell programming and M4 to extend the detection system. To this end,
architecture specific information, such as flags necessary for full optimisation,
or debugging, or warnings, or which libraries need to be linked against for the
Fortran compiler, is stored in ‘known-architecture’ files, which are simple shell
scripts which are sourced by the master configuration script once it has detected
the operating system. These files are simple in format, and new architectures
can be supported merely by placing a new file in the directory holding these
files, with a name corresponding to the operating system name returned by the
‘config.sub’ script invoked by Autoconf.

A similar system is used to configure for optional packages such as MPI,
pthreads or HDF5. To add a new optional package with its own configuration
options, a user may just create a directory in a specific place, and add a script
file in this place which may add extra definitions to the master include file or
add extra information to the make system. This is heavily used to support the
various different flavours of available MPI – native MPI on SGI, Cray and IBM
AIX machines, or MPICH, LAM, HPVM, MPIPro on these or other systems.

When creating a configuration the user may pass instructions to the con-
figuration scripts to override detection or defaults. For example the user may
choose to use a specific C or Fortran compiler, or choose to configure the code
for parallel operation by configuring with MPI, or specific the user may want
this configuration have different debugging or optimisation flags. The user may
also pass a specific architecture name to the configuration system in order to
cross-compile for a different architecture; in this case the known-architecture file
for the target platform must contain certain details which the configure script
would otherwise detect.

6.2 Building a Configuration

Once a configuration has been created the user must pick a set of thorns to
build. If the user doesn’t provide one, the make system will search for thorns
and generate a thornlist and give the user the option to edit it. The thornlist is
a plain text file and may be edited with any text editor.

Once there is a thornlist associated with a configuration, the CST, which
is described in detail in section 8.2, is run to validate the thorns and provide
bindings between the flesh and the thorns, and then the code is built based upon
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the flesh source and the sources of all thorns in the thornlist. The flesh and each
thorn are compiled into libraries which are linked to form the final executable.

In individual thorns the thorn writer has the option of using their own Make-
file or of using a simplified system whereby they list the files and subdirectories
which should be compiled, and a standard make file is used for that thorn. The
vast majority of thorn writers use the latter approach, which enables them to de-
velop with minimal knowledge of make file syntax or operation. More advanced
users may also similarly write make rules specifying dependencies between source
files in their thorn.

Since the object files for each configuration are kept in different directories
from the original source files, and a user may be building several configurations
simultaneously from one source tree, care has to be taken with the working direc-
tory of the compilation, especially when Fortran 90 modules or C++ templates
are used. This is currently solved by setting the working directory of any com-
pilation as a specific scratch directory in the configuration-specific build area.

Currently each thorn’s object files are packaged into libraries which are then
linked together to form the final executable. In future versions of Cactus it is
planned that these libraries may be dynamically loadable, on platforms which
allow this, thus allowing new thorns providing new capabilities, in particular
data analysis, to be loaded at run-time in long running simulations.

At build time the user may pass options to the make system to echo all
commands to the screen or to switch on compiler warnings. However no option
which would change the final executable is allowed at this stage, on the principle
that the files stored with the configuration should completely define the way the
executable is produced.

6.3 Managing Configurations

The configuration is the basic unit with which an end-user operates. The Cactus
framework provides many options to manage a configuration, some examples
are: building an executable (this option checks the thornlist and dependencies
of the executable and its sources, rebuilds any object files which are out of date,
and re-links the final executable if necessary as described above); running a test
suite (see section 13); removing object files or stored dependency information to
force a clean rebuild or save disk space; or producing a document describing all
the thorns in the configuration’s thornlist.

7 Code Portability

The previous section has described how the make system is able to configure and
make the code on all platforms. However this would be of no use if the code itself
were not portable. In order to ensure code portability, the flesh is written in ANSI
C. Thorns, however, may be written in C, C++, FORTRAN 77 or Fortran 90.
In order to ensure that thorns are platform independent, the configuration script
determines various machine-specific details, such as the presence or absence of
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certain non-ANSI C functions (thorns are encouraged to use equivalent functions
in the Cactus utility libraries (see section 12) which are guaranteed to be there),
or the sizes of variables, which vary from platform to platform – in order to avoid
problems with this, e.g. in cross-language calls or parallel jobs distributed across
heterogeneous platforms, Cactus defines a set of types, such as CCTK REAL,
CCTK INT, which are guaranteed to have the same size on all platforms and in
all languages. This also means that runs can produce exactly the same results on
different machines, and checkpoint files created on one machine can be restarted
on any other.

8 Modularity

This section describes how thorns identify themselves to the flesh and the make
system, and the way in which functionality is encapsulated and name spaces
are realised. Two important pieces of terminology must be introduced before
preceding. Grid variables are variables which can be passed between thorns or
routines belonging to the same thorn through the defined flesh interface; this
implies it is related to the computational grid rather than being an internal
variable of the thorn or one of its routines. An implementation is an abstract
name for the functionality offered by a thorn; all thorns providing the same
implementation expose the same interfaces to the outside world, and only one
such thorn may be active at a time.

8.1 CCL

Each thorn provides three specification files written in the Cactus Configuration
Language (CCL). These files designate which implementation the thorn provides
and the variables that the thorn expects to be available, describe the parameters
it uses, and specify routines from the thorn which must be called.

Variable scope may be either private, i.e. visible only to routines from this
thorn; protected, i.e. visible to all thorns in the group of friends of this thorn’s
implementation; or public, i.e. visible to all thorns which inherit from this thorn’s
implementation.

Grid Variables fall into three categories: Grid Scalars (GSs), which are single
numbers (per processor); Grid Functions (GFs), which are distributed arrays
with a size fixed to the problem size (all GFs have the same size); and Grid
Arrays (GAs) which are similar to GFs but may have any size. Grid Variables
must be one of the defined CCTK types (e.g. CCTK REAL, CCTK INT, etc),
whose size is determined when a configuration is created (see section 6.1). Grid
Functions are by default vertex-centred, however they may be staggered along
any axis.

Parameter scope may similarly be private, or may be declared to be ‘re-
stricted’, which means that other thorns may choose to share these parameters.
Parameters may be numeric, i.e. integer or floating point, boolean, keywords,
i.e. the value is a distinct token from a defined list, or arbitrary strings. The
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specification of a parameter includes a specification of the allowed values, i.e. a
range of numbers for numeric, a list of keywords for keyword parameters, or a
set of regular expressions for string parameters.

Parameters may also be declared to be steerable. This means that they are
not fixed for the duration of the simulation, but may have their value changed.
By default parameters are non-steerable, however a thorn author can declare
that a parameter may be steered at all times, or when the code is recovering
from a checkpoint. This is an important distinction as, while parameters are
provided as local variables to routines for speed of access, a lot of parameters
are used to setup data structures or to derive other values, which would thus
be unaffected if the parameter value was subsequently changed; by declaring a
parameter “steerable” the thorn author is certifying that changing the value of
the parameter will make a difference. (Parameters values may only be changed
by calling a routine in the flesh which validates the change.)

Routines from the thorn may be scheduled to run at various time bins and
relative to the times when other routines from this thorn or other thorns are
run. The thorn author may also schedule groups within which routines may be
scheduled; these groups are then themselves scheduled at time bins or within
schedule groups analogously to routines. The scheduling mechanism is described
in more detail in section 9. The scheduling of routines may be made conditional
on parameters having certain values by use of if statements in the CCL file.

Memory for variables may be allocated throughout the course of the simula-
tion, or allocated just during the execution of a particular scheduled routine or
schedule group.

Additionally thorn authors may define specific functions which they provide
to other thorns or expect other thorns to provide. This provides an aliasing
mechanism whereby many thorns may provide a function which may be called
by another thorn with a particular name, with the choice of which one is actually
called being deferred until run-time. In the absence of any active thorn providing
such a function an error is returned.

8.2 CST

When the executable for any particular configuration is built, the Cactus Spec-
ification Tool (CST) is invoked to parse the thornlist and then the individual
thorns’ CCL files. When the CST has parsed the CCL files it performs some
consistency checks. These include: checking that all definitions of a particular
implementation are consistent; checking that default values for parameters are
within the allowed ranges; and checking that parameters shared from other im-
plementations exist and have the correct types.

Once the CCL files have been verified the CST uses the specifications from
these files to create small C files which register information with the flesh about
the thorns. This mechanism allows the flesh library to be completely indepen-
dent of any thorns, while at the same time minimising the amount of machine-
generated code. Along with the registration routines the CST generates various
macros which are used to provide argument lists to routines called from the
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scheduler, as well as wrapper routines to pass arguments to Fortran routines.
The parameter specifications are turned into macros which place the parameters
as local variables in any routine needing access to parameters. All the macros
are generated on a thorn-by-thorn basis and contain only information relevant
to that thorn. The schedule specifications are turned into registration routines
which register relevant thorn routines with the scheduler.

9 The Scheduling Mechanism

Routines (or schedule groups – for scheduling purposes they are the same) sched-
uled from thorns may be scheduled before or after other routines from the same
or other thorns, and while some condition is true. In order to keep the modu-
larity, routines may be given an alias when they are scheduled, thus allowing all
thorns providing the same implementation to schedule their own routine with a
common name. Routines may also be scheduled with respect to routines which do
not exist, thus allowing scheduling against routines from thorns or implementa-
tions which may not be active in all simulations. Additionally the schedule.ccl
file may include ’if’ statements which only register routines with the scheduler
if some condition involving parameters is true.

Once all the routines have been registered with the scheduler, the before and
after specifications form a directed acyclic graph, and a topological sort is carried
out. Currently this is only done once, after all the thorns for this simulation have
been activated and their parameters parsed.

The while specification allows for a degree of dynamic control for the schedul-
ing, based upon situations in the simulation, and allows looping. A routine may
be scheduled to run while a particular integer grid scalar is non-zero. On exit
from the routine this variable is checked, and if still true, the routine is run
again. This is particularly useful for multi-stage time integration methods, such
as the method of lines, which may schedule a schedule group in this manner.

This scheduling mechanism is rule-based as opposed to script-based. There
are plans to allow scripting as well; see section 17 for further discussion of this.

10 Memory Management and Parallelisation

In order to allow the use of the same application codes in uni-grid, parallel and
adapted-grid modes, each routine called from the scheduler is assigned an n-
dimensional block of data to work on; this is the classical distributed computing
paradigm for finite difference codes. In addition to the block of data and its size,
information about each boundary is given, which specifies if this boundary is
a boundary of the actual computational domain, or an internal grid boundary.
The routine is passed one block of data for each variable which has storage
assigned during this routine (see section 8.2 for argument list generation). The
memory layout of arrays is that of Fortran, i.e. fastest-changing index first; in C
these appear as one-dimensional arrays and macros are provided to convert an
n-dimensional index into a linear offset withing the array.
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In order to isolate the flesh from decisions about block sizes, a particular
class of thorns, which provide the DRIVER implementation, is used. Drivers
are responsible for memory management for grid variables, and for all parallel
operations, in response to requests from the scheduler.

The driver is free to allocate memory for variables in whatever way is most
appropriate, some possibilities for uni-grid are: having memory for the whole
domain in one block, with this block being passed to routines; all the memory
in one block, but passing sub-blocks to routines; splitting the domain into sub-
domains and processing these one by one, e.g. for out of core computation; or
splitting into sub-domains and then processing sub-domains in parallel.

Since the application routines just get such a block of data, data layout may
change with time, and indeed will do with adaptive mesh refinement or dynamic
load balancing.

As the driver is responsible for memory management, it is also the place
which holds the parallelisation logic. Cactus 4.0 supports three basic paralleli-
sation operations: ghost-zone synchronisation between sub-domains; generalised
reduction operators (operations which take one or more arrays of data and return
one or more scalar values from data across the whole domain); and generalised
interpolation operators (operations which take one or more arrays and a set of
coordinates and return one or more scalars for each coordinate value).

Synchronisation is called from the scheduler – when a routine or schedule
group is scheduled it may list a set of grid variables which should be synchro-
nised upon exit. Routines may also call synchronisation internally, however such
routines would fail when more than one block of data is processed by a processor
or thread, such as with adaptive mesh refinement or out of core computation,
as the routine would not yet have been invoked on the remaining blocks so
ghost-zone exchange would be impossible.

Similarly the other operations – reduction and interpolation – being global
in nature, should only be performed one per grid, however many sub-grids there
are; routines which call these routines must be scheduled as “global”. This infor-
mation is then passed to the driver which should then only invoke such routines
once per processor, rather than once per sub-block per processor.

The flesh guarantees the presence of these parallel operations with a function
registration mechanism. A thorn may always call for synchronisation, reduction
or interpolation, and these are then delegated to functions provided by the driver,
or return appropriate error codes if no such function has been provided.

These parallel operations are in principle all that an application programmer
needs to think about as far as parallelisation is concerned. Such a programmer
is insulated by the scheduler and by these functions of any specific details of the
parallelisation layer; it should be immaterial at the application level whether the
parallelisation is performed with MPI, PVM, CORBA, threads, SUN-RPC, or
any other technology.

Since all driver thorns provide the DRIVER implementation, they are in-
terchangeable, no other thorn should be affected by exchanging one driver for
another. Which driver is used is determined by which is activated at run-time.
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At the time of writing there are four driver thorns known to the authors:
a simple example uni-grid, non-parallel one (SimpleDriver); a parallel uni-grid
one (PUGH); a parallel fixed mesh refinement driver (Carpet) ; and a parallel
AMR one (PAGH). PUGH is the most frequently used one, and is contained in the
computational toolkit available from the Cactus web site; Carpet and PAGH have
been developed independently.

10.1 PUGH

PUGH is the only driver currently distributed with the Cactus Computation
Toolkit. This driver is MPI based, although it may also be compiled without
MPI for single processor operation. In single-processor mode PUGH currently cre-
ates one block of data per variable and passes that through to routines; there
has also been discussion of enhancing this to generate smaller sub-blocks tuned
to the cache size to increase performance. In parallel mode PUGH decomposes the
processors in the n-dimensions such that the smallest dimension has the fewest
number of processors, which allows greater cache-efficiency when constructing
messages to be passed to other processors, however this may be over-ridden by
parameter setting which allow any or all of the dimensions to be set by hand.
There are plans to add features to allow the processor topology to be optimised
for node-based machines such as the IBM SP or Hitachi SR8000 which con-
sist of small (typically 8 or 16 processor) nodes connected together to produce a
larger machine. The load-balancing algorithm in PUGH is also customisable, and a
modified version of PUGH has been used in large scale distributed computing [19].

Along with PUGH, the Computational Toolkit provides the auxiliary thorns
PUGHReduce and PUGHInterp to provide reduction and interpolation when PUGH
is used as a driver, and PUGHSlab, which provides the hyperslabbing capability
used by the Toolkit’s IO thorns.

11 IO

Input and Output are vital to any simulation, and indeed to any framework. In
keeping with the overall design of Cactus, the flesh has minimal knowledge of
the IO, but provides a mechanism so that thorn authors can call for output of
their variables and the appropriate IO routines will be called.

All thorns providing IO routines register themselves with the flesh, saying
they provide an IO method, which is a unique string identifier. Associated with an
IO method are three functions: one to output all variables which need output;
one to output a specific variable; and one to determine if a variable requires
output. The first two of these routines then have analogues in the flesh which
traverses all IO methods calling the appropriate routines, or call the routine
corresponding to a specific IO method. Once per iteration the master evolution
loop calls the routine to output all variables by all IO methods.

Thorns providing IO methods typically have string parameters which list the
variables which should be output, how frequently (i.e. how many iterations be-
tween output), and where the output should go. In order to simplify such thorns,
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and to provide standards for parameter names and meanings, the computational
toolkit contains the IOUtil thorn. This thorn provides various default parame-
ters such as the output directory, the number of iterations between output of
variables, various down-sampling parameters and other parameters which may
need to be used by thorns providing output of the same data but in different
formats. It also provides common utility routines for IO.

The computational toolkit contains thorns which output data to screen, to
ASCII output files in either xgraph/ygraph [20], or GNUPlot [21] format, binary
output in IEEEIO [22] or HDF5 [23] formats, or as jpegs of 2d slices of datasets.
This data may also be streamed to external programs such as visualisation clients
instead of or in addition to being written to disk. Streamed visualisation modules
exist for Amira [24] and the widely available OpenDX [25] visualisation toolkits.

Since all IO thorns must operate on m-dimensional slabs of the n-d data,
which is (section 10) laid out and distributed in a driver dependent manner,
there is also a defined interface provided by thorns providing the HYPERSLAB
implementation. This interface is driver independent, and allows an IO thorn to
get or modify a particular slab of data without being tied to a particular driver.

12 Utilities

The flesh provides sets of utility functions which thorns developers may use.
These include common data storage utilities such as hash tables and binary trees;
an arithmetical expression parser which may be used to perform calculations on
data based upon an expression given as a string; access to regular expression
functions (using the GNU regex library if the configure script does not find
one); and an interface to create and manipulate string-keyed tables of data.

Apart from these general utilities, the flesh also provides an infrastructure to
time the execution of code blocks. This consists of a way to create and manipulate
timer objects, each of which has an associated set of clocks, one for each time-
gathering function, such as the Unix getrusage call, the wall-clock time or the
MPI Wtime function. These timers and their clocks may be switched on or off
or reset as necessary. The scheduler in the flesh uses these functions to provide
timing information for all scheduled functions.

13 Test Suites

An essential component of any code is a well-defined way to perform regression
tests. This is especially true for a framework, where the final result of a set
of operations may depend upon many independently written and maintained
modules. Cactus includes an automated test-suite system which allows thorn
authors to package parameter files and the results they are expected to produce
with their thorns, and then allows the current code to be tested against these
results. The test-suite compares numbers in the output files to a specified toler-
ance, which is generally set to the accuracy which can be expected given different
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machines’ round-off error and machine precision, but can be over-ridden by the
thorn author if this measure is not appropriate.

14 Thorn Computational Infrastructure

The overriding design criterion for Cactus has been to put as little in the flesh as
possible, which allows the maximum flexibility for users to develop new function-
ality or modify existing functionality. The corollary to this is that the flesh by
itself is not very useful. Sections 10 and 11 described two sets of infrastructure
thorns, the driver and the IO thorns respectively. This section describes some of
the other infrastructure which is available in the computational toolkit.

14.1 Interpolation and Reduction

While the flesh provides standard interfaces for generalised interpolation and
reduction operations, and guarantees that these functions may always be called,
the actual operations need to be done by the driver thorn (see section 10 , or
by a closely associated thorn. A thorn providing such an operation registers a
function with the flesh, with a unique name associated with the operator, such
as “maximum”. A thorn which needs to interpolate data in a grid variable, or
to perform a reduction on it, then calls the appropriate flesh function, with
the name of the operation, and the flesh then delegates the call to the thorn
providing the operation. The Computational Toolkit provides several thorns for
operations such as maximum, L1 and L2 norms, parallel interpolation, etc.

14.2 Coordinates

A particular grid has a single coordinate system associated with it, out of the
many possibilities, and each grid array may be associated with a different co-
ordinate system. To facilitate the use of different coordinate systems we have a
thorn providing the COORDBASE implementation, which defines an interface
to register and retrieve coordinate information.

This interface allows thorns providing coordinate systems to store informa-
tion such as the coordinates of the boundaries of the computational grid in
physical space, and the coordinates of the interior of the grid – i.e. that part of
the grid which is not related to another by a symmetry operation or by a physi-
cal boundary condition. The thorn also associates details of how to calculate the
coordinate value of a point with the coordinate system; this data may be cal-
culated by origin and delta information, by associating a one-dimensional array
with the coordinate direction to hold the coordinate data, or, for full generality,
with an n-dimensional GA (or GF) where each point in this GA (or GF) holds
the coordinate value for this coordinate for this point.

Based upon this coordinate system information, IO methods may output
appropriate coordinate information to their output files or streams.
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14.3 Boundary Conditions

Boundary conditions are another basic feature of any simulation. They fall into
two broad classes – symmetry and physical boundary conditions. Additionally
boundary conditions in both these classes may be either local or global. For
example periodic boundary conditions are global symmetry conditions, the Car-
toon [26] boundary condition is a symmetry condition but is local, and radiative
boundary conditions are physical and local.

If all boundary conditions were local, there would be no problem calling them
from within an application routine, however as soon as global conditions are
used, calling from a routine suffers the same problems as any parallel operation.
Additionally it is undesirable that routines should have to know anything about
the symmetries of the grid – they should just know about the physical boundary
conditions, and when these are applied the appropriate symmetries should be
performed.

In order to address these needs, we have defined a scheme whereby instead of
calling the boundary conditions directly, calculation routines merely call a func-
tion to indicate that a particular variable requires a particular physical bound-
ary condition, and then the thorn providing this routine schedules a schedule
group called ApplyBCs after the calculation routine (schedule groups may be
scheduled multiple times, so there is no problem with conflicts between multi-
ple thorns scheduling this group). All symmetry boundary condition and global
physical boundary condition thorns schedule a routine in the ApplyBCs group,
and the Boundary thorn schedules a routine to apply local physical boundary
conditions in the group as well. Thus when the ApplyBCs group is active, each
routine scheduled in it examines the list of variables which have been marked
as needing boundary conditions applied, and, if it is a symmetry routine applies
the symmetry, or if it is a physical boundary condition and the variable requires
that physical boundary condition, applies the appropriate physical boundary
condition – local physical boundary conditions are registered with the Boundary
thorn, which then uses the routine it has scheduled in the group to dispatch
variables to the appropriate routine.

This scheme allows new symmetry conditions to be added with no modifica-
tion of any calculation routine, and allows these routines to work appropriately
in the presence of multiple blocks of data per process or thread.

14.4 Elliptic Solvers

The computational toolkit provides a thorn Ell Base which provides an exper-
imental interface for elliptic solvers. This thorn provides a set of registration
functions to allow thorns which solve certain sets of elliptic equations to be ac-
cessed via a specified interface; e.g. a thorn wanting to solve Helmholtz’s equation
makes a call to the function in Ell Base passing as one argument a well-known
name of a particular solver, such as PETSc [12] , which is then invoked to per-
form the calculation. Thus the actual elliptic solver used may be decided at
run-time by a parameter choice, and new elliptic solvers may be used with no
change to the application thorn’s code.
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14.5 Utility Thorns

In addition to necessities such as drivers, IO, coordinates and boundary condi-
tions, there are various general utility thorns. For example we have a thorn which
takes datasets and checks for NaNs; this can be either done periodically as set by
a parameter, or called from other thorns. On finding a NaN the thorn can issue
a warning, report the location of the NaN, stop the code, or any combination of
these.

Another thorn, which is under development at the moment, interacts with
the Performance API (PAPI) [27] to allow profiling of a simulation. PAPI allows
access to hardware performance counters in a platform-independent manner.

15 External Interaction

The most basic way to run a simulation is to start it and then examine the data
written to disk during or after the run. A framework, however, is free to provide
modules to allow interaction with a running simulation. This may range from
just querying the status of the simulation, through visualising data remotely,
to steering the control parameters of a simulation based upon user input or
predictions and analysis performed by other programs.

15.1 HTTPD

The Cactus Computational Toolkit contains a thorn, HTTPD (based on an original
idea and implementation by Werner Benger), which acts as a web-server. The
basic thorn allows users to connect to the running simulation with a web-browser
and to examine and, if authenticated, to modify, the values of parameters. An
authenticated user may also choose to terminate or pause the simulation; the
user may also tell the code to pause at a specific iteration or after a certain
amount of simulation time. The ubiquitous nature of web-browsers makes this
an almost ideal way to interact with the simulation.

Additional thorns may be used to provide further capabilities to the web
server. For example, application thorns can also add their own information pages
and provide custom interfaces to their parameters. The toolkit contains the thorn
HTTPDExtra which provides access to the IO methods within the framework by
providing a view port by which users may view two-dimensional slices through
their data using IOJpeg, and through which any file known by the simulation may
be downloaded. This allows users to examine the data produced by a remotely
running simulation on the fly by streaming data to visualisation tools such as
OpenDX [25], Amira [24] or GNUPlot [21], see section 15.2

The combination of the ability to pause the simulation, to examine data
remotely, and to steer simulation parameters provides a powerful method for
scientists to work with their simulations. This combination could be enhanced
further to provide a debugging facility.

Currently HTTPD only supports un-encrypted HTTP connections, however
there are plans to enhance it to use HTTP over TLS [28] [29]/SSL [30] or over
GSI [31], providing capabilities for secure authentication and encrypted sessions.
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15.2 Remote Visualisation and Data Analysis

As mentioned above, the Cactus Computational Toolkit provides mechanisms to
query and analyse data from a running simulation. While it is true that because
the simulation may be scheduled in the batch queue at unpredictable times,
the scientist will not necessarily be on hand to connect to the simulation at
the moment that it is launched, the simulations that create the most egregious
difficulties with turnaround times typically run for hours or days. So while the
interactive analysis may not necessarily capture the entire run, it will intercept
at least part of it. Any on-line analysis of the running job before the data gets
archived to tertiary storage offers an opportunity to dramatically reduce the
turn-around time for the analysis of the simulation outcome.

Keeping up with the data production rate of these simulations is a tall order,
whether the data is streamed directly to a visualisation client or pre-digested
data is sent. Earlier pre-Cactus experiments with a circa 1992 CAVE application
called the Cosmic Worm demonstrated the benefits of using a parallel isosurfacer
located on another host to match this throughput. However, it also pointed out
the fact that it doesn’t take too many processors limits primarily from the I/O
rate are reached. It does no good to perform the isosurface any faster if its
performance is dominated by the rate at which data can be delivered to it.

For the first remote visualisation capability in Cactus, it was decided to im-
plement a parallel isosurfacer in-situ with the simulation so that it would use the
same domain decomposition and number of processors as the simulation itself.
The isosurfacer would only send polygons to a very simple remote visualisa-
tion client that runs locally on the user’s desktop; offering sometimes orders of
magnitude in data reduction with throughput that exactly matched the produc-
tion rate of the simulation code. This paradigm was further enhanced to include
geodesics and other geometric visualisation techniques.

Other ways to reduce the throughput to data clients is to send only sub-
sets of the data. The Cactus IO methods, in particular the HDF5 method, allow
the data to be down-sampled before being written to disk or streamed to a
visualisation client. Another way to stream less data is to pick a data-set of
a lower dimension from the full data-set, and we have IO methods which will
produce 1 or 2-dimensional subsets of three-dimensional data-sets.

These and other remote technologies are being actively developed through a
number of projects for example [32,33,34].

16 Applications

16.1 Numerical Methods

Although Cactus was designed to support, or to be extensible to support, differ-
ent numerical methods, most of the existing infrastructure has been developed
around regular structured meshes with a single physical domain and coordinate
system, and more specifically for finite difference methods with spatial dimen-
sions of three or less. This is well-suited to many calculations, particularly in the
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problem domains for which Cactus was first developed. However there are many
other problem domains for which these restrictions pose problems.

Fundamental support for other numerical methods typically involves the de-
velopment of a standard driver and associated thorns (with possible extensions
of CCL features). It is hoped that many of the existing infrastructure thorns,
such as those for IO and coordinates, can be developed to support additional
methods. For example, the addition of a hyperslabbing thorn for a particular
driver should allow for IO thorns to provide for different underlying methods.

With the addition of appropriate drivers (see section 17), and associated
driver infrastructure thorns, the Cactus framework can be used with structured,
unstructured, regular and irregular meshes, and can implement finite differenc-
ing, finite volumes or finite elements, particle and spectral methods, as well as
ray tracing, Monte Carlo etc.

16.2 Scalar Wave Equation

The solution of the scalar wave equation using 3D Cartesian coordinates pro-
vides a prototypical example of how a wide class of initial value problems can
be implemented with finite differencing methods in Cactus. The CactusWave
arrangement contains thorns which implement this solution in each of the cur-
rently supported programming languages, along with additional thorns providing
initial data and source terms [13].

16.3 General Relativity

The introduction describes the historical relationship between Cactus and nu-
merical relativity. The requirements of this diverse community for collaboratively
developing, running, analysing and visualising large-scale simulations continue
to drive the development of Cactus, motivating computational science research
into advanced visualisation and parallel IO as well as Grid computing.

The Cactus framework and Computational Toolkit is used as the base envi-
ronment for numerical relativity codes and projects in nearly two dozen distinct
groups worldwide, including the 10-institution EU Network collaboration and
others in Europe, as well as groups in the US, Mexico, South Africa, and Japan.
In addition, the Cactus Einstein Toolkit provides an infrastructure and com-
mon tools for numerical relativity, and groups which choose to follow the same
conventions can easily inter-operate and collaborate, sharing any of their own
thorns, and testing and verifying thorns from other groups (and many do).

The numerical relativity community’s use of Cactus provides an example
of how a computational framework can become a focal point for a field. With
many different relativity arrangements now freely available, both large groups
and individuals can work in this field, concentrating on their physics rather than
on computational science. In this environment, smaller groups are more easily
able to become involved, as they can build on top of open and existing work
of other groups, while concentrating on their particular expertise. For example,
an individual of group with expertise in mathematical analysis of gravitational
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waves can easily implement thorns to do this, using other groups’ initial data
and evolution thorns. Such an approach is increasingly becoming a point of entry
into this field for groups around the world.

In addition to the leverage and community building aspect of an open frame-
work like Cactus, the abstractions it provides make it possible for a new technol-
ogy, such as fixed or adaptive mesh refinement, improved IO, new data types, etc,
to be added and made available to an entire community with minimal changes to
their thorns. Not only does this have obvious benefits to the user communities,
it has the added effect of attracting computational science groups to work with
Cactus in developing their technologies! They find not only a rich application
oriented environment that helps guide development of their tools, but they also
find satisfaction in knowing their tools find actual use in other communities.

16.4 Other Fields

Although Cactus began as a project to support the relativity community it is an
open framework for many applications in different disciplines. Here we simply list
a few of a growing number of active projects of which we are aware at present.
As part of an NSF project in the US, the Zeus suite of codes for Newtonian
magnetohydrodynamics has been developed into a set of thorns (in the Zeus
arrangement, which use AMR, and is publicly available. In another discipline,
Cactus has been used as a framework to write parallel chemical reactor flow ap-
plications, where it was found to be an effective tool for speeding up simulations
across multiple processors [35]. Climate modellers at NASA and in the Nether-
lands have also taken interest in Cactus, and are actively developing thorns for
both shallow water models and a coupling of two ocean models [36]. Other appli-
cation communities prototyping applications in Cactus, or investigating its use
as a framework for their applications, include the fusion simulation community,
avalanche simulators, and geophysics groups, to name a few.

16.5 Grid Computing

Last but not least, we turn to Cactus as a framework, not only for traditional
applications, but also for developing applications that may run in a Grid en-
vironment. The Grid is an exciting new development in computing, promising
to seamlessly connect computational resources across an organisation or across
the world, and to enable new kinds of computational processes of unprecedented
scales. As network speeds increase, the effective “distance” between computing
devices decreases. By harnessing PCs, compute servers, file servers, handhelds,
etc, distributed across many locations, but connected by ever better networks,
dynamically configurable virtual computers will be created for many uses [1].

However, even if the networks, resources, and infrastructure are all function-
ing perfectly, the Grid presents both new challenges and new possibilities for
applications. Although the applications of today may (or may well not) actually
run on a Grid, in order to run efficiently, or more importantly, to take advantage
of new classes of computational processes that will be possible in a Grid world,
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applications must be retooled, or built anew. And yet, as we stressed in the intro-
duction, most application developers and users want to focus on their scientific
or engineering discipline, and not on the underlying computational technology.

For the same reasons that Cactus has been an effective tool for building ap-
plications that take advantage of advanced computational science capabilities on
many different computer architectures, while hiding many details from the user,
it has also been one of the leading sources of early Grid applications. Its flexible
and portable architecture make it a good match for the varying needs of Grid
applications. In particular, it has traditionally been used for many remote and
distributed computing demonstrations [37,38,39,19]. Because of the abstractions
available in Cactus, it has been possible to modify the various data distribution,
message passing, and IO layers so they function efficiently in a distributed en-
vironment, without modifying the applications themselves [19]. For example, it
has been possible to take very complex, production code for solving Einstein’s
equations which is coupled to GR hydrodynamics to simulate colliding neutron
stars, and distributed across multiple supercomputers on different continents,
while it is remote visualised and controlled from yet another location.

This is just the beginning of what can be done on future Grids. We imagine
a world where applications are able autonomously to seek out resources, and
respond to both their own changing needs and the changing characteristics of
the Grid itself, as networks and computational resources change with time. Ap-
plications will be able not only to parallelise across different machines on the
Grid, but will also be able spawn tasks, migrate from site to site to find more
appropriate resources for their current task, acquire additional resources, move
files, notify users of new events, etc [4]. Early prototypes of this kind of capabil-
ity have already been developed in Cactus; the “Cactus Worm” demonstration
of Supercomputing 2000 was a Cactus application (any application inserted in
the Cactus framework would do) that was able to: run on any given site, make
use of the existing Grid infrastructure to move itself to a new site on a Grid,
register itself with a central tracker so its users could monitor or control it, and
then move again if desired [40]. This demonstration of new types of computation
in a Grid environment foreshadows a much more complex world of the future.

However, the underlying Grid technology is quite complex, and varies from
site to site. Even if an application programmer learns all the details of one Grid
technology, and implement specific code to take advantage of it, the application
would likely lose some degree of portability, crucial in the Grid world. Not only
does one wish to have applications that run on any major computing site, with
different versions of Grid infrastructure, but also one wants them to run on local
laptops or mobile devices, which may have no Grid infrastructure at all!

Learning from the Cactus Framework, one solution is to develop a Grid Ap-
plication Toolkit (GAT), that abstracts various Grid services for the application
developer, while inter-operating with any particular implementation. The Grid-
Lab project [41], is currently underway to do just this. The goal is to develop
a toolkit for all applications, whether they are in the Cactus framework or not.
The GAT will provide an abstracted view of Grid services of various kinds to the
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user/developer, and will dynamically discover which services are actually avail-
able that provide the desired functionality (e.g., “find resource”, “move file”,
“spawn job”, etc). It is far beyond the scope of this article to go into further
detail, but we refer the reader [4,42,43] for more detail.

17 Future Plans

Cactus 4.0 is a great step from previous versions of Cactus, providing much more
modularity and flexibility. However there are numerous shortcomings, and many
things are planned for future versions.

Support for unstructured meshes is intended, which opens up the use of
Cactus for finite volume and finite element calculations. We have had many dis-
cussions with communities, e.g. aerospace and earthquake simulation, which use
these methods, and have well-developed plans on how to support such meshes.

Another plan we have is to enable more complicated scenarios, consider the
following: (i) Many CFD calculations also use multi-block grids – grids which
are themselves made up of many sub-grids, some being structured and some
unstructured, e.g. simulation of flow past an aircraft wing may use an overall
structured mesh, with a small unstructured grid block around the wing and its
stores; (ii) Climate modelling simulations have many distinct physical domains,
such as sea, icebergs, land and air, each of which has its own physical model, and
then interaction on the boundaries; (iii) Some astrophysical simulations require
several coordinate patches to cover a surface or volume.

These are all sub-classes of what we refer to as “multi-model”. While all can
be done currently within Cactus using Grid Arrays, this is not the most natural
way to provide this functionality, and requires more communication and coor-
dination between individual module writers than is desirable. We have defined
a specification to enable any combination of these types of scenarios and intend
to enable this functionality in a future release.

Currently all Grid Functions or Grid Arrays are distributed according to their
dimension across all processors. This is the most common need, however there
are many situations where one would like to define a variable which only lives on
the boundary of a grid. This can be faked at the moment by defining a GA with
one lower dimension than GFs and ignoring it on internal processors, however
even then the distribution of this GA may not correspond to the distribution of
a GF on that face. To solve this problem we intend to introduce a new class of
grid objects, sub-GFs, which will have the appropriate distribution.

Another class of methods not currently supported are particle methods, such
as Particle-In-Cell (PIC) and Smoothed-Particle-Hydrodynamics (SPH). Both
these methods require a small amount of additional communication infrastruc-
ture to enable exchange of particle information between different processors.

Currently thorns can only be activated when the parameter file is read, and
not during the course of the simulation. An obvious enhancement is to enable
thorn activation, and even de-activation, at any point in the program execution.



Cactus Framework 27

This would allow the code to act as a compute server, receiving requests for sim-
ulations from external sources, and, if thorns were dynamically loadable libraries
as opposed to statically linked, would allow new functionality to be incorporated
at will into long-running simulations.

Another enhancement would be to allow scripting as an alternative to the
current scheduling mechanism. The current mechanism allows thorns to inter-
operate and for simulations to be performed with the logic of when things happen
encapsulated in the schedule CCL file; other frameworks do the same thing by
providing a scripting interface, which gives more complete control of the flow
of execution, at the expense of the user needing to know more of the internals.
Both schemes have advantages and disadvantages. In the future we would like to
allow users to script operations using Perl, Python, or other scripting languages.

Currently Cactus only allows thorns in C, C++, and Fortran. Addition of
other languages is fairly straightforward as long as there exists a method to map
between the language’s data and C data. We plan to add support for thorns
written in Perl, Python and Java in the future; this will be done by defining
an interface which would allow a thorn to inform the make system and the
CST about the mappings and how to produce object files from a language’s
source files, thus allowing support for any language to be added by writing an
appropriate thorn.

In section 6 it was stated that Cactus is not installed. In the future we would
like to support the installation of the Cactus flesh and the Computational Toolkit
arrangements in a central location, with other arrangements installed elsewhere,
for example in users’ home directories, thus providing a consistent checked out
version of Cactus across all users on a machine. In principle it would also be
possible for configurations to be centralised to some extent – the object files and
libraries associated with the Computational Toolkit for a particular configuration
could be provided by the system administrator, and only the object files and
libraries of user-local arrangements would then need to be compiled by the user.
However, given the dynamic nature of code development it is not clear that such
centralised configurations would be practicable.

All the above require modifications to the flesh. However the primary method
to add functionality is by adding new thorns.

One basic feature intended for the future is to develop a specification for a set
of parallel operation, the Cactus Communication Infrastructure (CCI) which will
abstract the most commonly used parallel operations, and provide a set of thorns
which implement this infrastructure using common communication libraries such
as MPI, PVM, CORBA, SUN-RPC, etc. This would then allow driver thorns
themselves to be built independently of the underlying parallel infrastructure,
and greatly increase the number of parallel operations available to other thorns.

Another set of useful functionality would be to develop remote debuggers and
profilers based upon the current HTTPD thorn and the expression parser. Indeed
HTTP is far from being the only possible way to interact with a remote code,
and thorns could be written to present allow interaction with a simulation via a
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SQL or LDAP interface, or as a web-service; there is already work on steering
directly from visualisation clients using the streamed HDF5 interface [44].

Multi-grid methods are commonly used to solve elliptic equations, however
all current methods of putting elliptic solvers into Cactus require knowledge of
the driver or at least of the parallelisation technology. It should be possible to
develop a set of thorns which use the scheduler in a driver and parallel-layer
independent manner to solve elliptic problems.

The current set of thorns allows IO in many formats, however it is straight-
forward to add other formats, and there is at least one group with plans to write
a NetCDF IO thorn. Additionally the infrastructure for IO makes it plausible to
write IO methods that do transformations on the data first, e.g. spectral decom-
position, before writing them out to disk or a stream; such methods would need
to call routines from lower-level IO methods, and we have designed an interface
which presents lower-level IO methods as stream-equivalents, thus insulating the
higher-level IO methods from knowledge of specific lower-level IO methods.
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