CMSC 733, Computer Processing of Pictorial
Information
Homework 1: AutoCalib!
Due on: 11:59:59PM on Friday, Feb 24 2017

Prof. Yiannis Aloimonos,
Nitin J. Sanket

February 18, 2017

The aim of this project is to estimate the elusive intrinsic parameters of the camera. In
particular, we will estimate the focal lengths f,, f,, the principal points ¢, ¢, and the radial
distortion parameters k; and ko. Note that we are neglecting skew s and we are using a two
parameter distortion model. This model is not very good for ultra-wide angle lenses. We
will be following the pipeline given in Ref. [1]. The next few sections will talk about what
parts of code are to be filled by you and the functionality of each part of the code.

1 Data

The Zhang’s paper relies on a calibration target to estimate camera intrinsic parameters.
The calibration target used can be found in the file checkerboardPattern.pdf. This was
printed on an A4 paper and the size of each square was 21.5mm. Note that the Y axis has odd
number of squares and X axis has even number of squares. It is a general practice to neglect
the outer squares (extreme square on each side and in both directions). Thirteen images
taken from a Google Pixel XL phone with focus locked are given in the folder ./Code/Imgs.

2 Initial parameter Estimation

We are trying to get a good initial estimate of the parameters so that we can feed it into the
non-linear optimizer. We will define the parameters we are using in the code next.

x denotes the image points, X denotes the world points (points on the checkerboard), k;
denotes the radial distortion parameters, K denotes the camera calibration matrix, R and ¢
represent the rotation matrix and the translation of the camera in the world frame.

2.1 Solving for approximate K or camera intrinsic matrix

Refer to Ref. [1] section 3.1 for a solution of parameters in K. As a side note, the explanation
for each part of the code is provided in the comments. The main code is in test.m. For this
Subsection you need to modify the EstimateK linear.m function. The corners are detected
by a built-in MATLAB function which needs the Computer Vision toolbox. You need to run
these codes on the Server if you do not have the toolbox. More details about the camera
calibrator tool in MATLAB can be found here: https://www.mathworks.com/help/vision/
ug/single-camera-calibrator-app.html. Note that you are not allowed to use any other
functions apart from that provided in the starter code.

2.2 Estimate approximate R and ¢ or camera extrinsics

Refer to Ref. [1] section 3.1 for details on how to estimate R and ¢. Note that the author
mentions a method to convert a normal matrix to a rotation matrix in Appendix C, this can
be neglected most of the times. You need to fill in the EstimateRt_linear.m function for
this part.

2.3 Approximate Distortion k.

Because we assumed that the camera has minimal distortion we can assume that k. = [0,0]7.

2.4 Non-linear Geometric Error Minimization

We have the initial estimates of K, R,t and , ks, we want to minimize the geometric error
defined as given below

N M
DO iy — iy (K, Riyti, X, k) |

i=1 j=1

Here z; ; and &; ; are an inhomogeneous representation. You need to complete two functions
for this part, GeoError.m and MinGeoError.m.

GeoError.m function evaluates the geometric error. In the function [error, f] = GeoError (x,

X, ks, K, Rs, ts), error is the geometric error and f is a vectorized form of a 2 x N xn
matrix (here n is the number of corners in the checkerboard and N is the number of the
calibration images) which has x; j1 — ;1 Or @; j2 — &; jo as its elements. x is the 2D points
in an x 2 x N matrix and X is the 3D points in a n x 2 matrix. ks is the radial distortion
parameter and is a 2 x 1 matrix and K is the 3 x 3 calibration matrix. Rs is a set of rotation
matrices of size 3 x 3 X N and ts is a set of translation vectors or size 3 x 1 x N. Note that
this function can be called by a MATLAB built-in optimizer, 1sqnonlin().

MinGeoError.m function minimizes the geometric error by using the Levenberg-Marquardt
solver (Amazing solver, a worthy read). You can use the built-in MATLAB optimizer
1sqnonlin() for this.

Note that, the two parameter distrotion model is described next (you need this for the

https://www.mathworks.com/help/vision/ug/single-camera-calibrator-app.html
https://www.mathworks.com/help/vision/ug/single-camera-calibrator-app.html

GeoError.m function, even though we are neglecting this for the initial estimates we need
to have this in the error function so that our non-linear optimizer can actually estimate it).
Let [a,b]” be the inhomogeneous representation of [R, t][X, 1]7. Let 72 = a® + b%.

Also, [Uigear, Videat] T is an inhomogeneous representation of K[R,t][X,1]T.
Jo 0 ¢

Here K = | 0 f, ¢, |, [Wimg,Vimg)" is the corresponding 2D point z. Now, the correction
0 0 1

for the two-parameter distortion model can be written as
Zeorr = Lideal T xideal(k1r2 + k27’4>

More details about this can be found in Section 3.3 of Ref. [1].

2.5 Starter Code

All the starter code is given in the Code folder.

2.6 Submission Guidelines

Submit your codes (.m files) with the naming convention

YourDirectoryID hwl.zip onto ELMS/Canvas (Please compress it to .zip and no
other format). Your DirectoryID is the username to your UMD e-mail ID. If your email
ID is ABCD@terpmail.umd.edu or ABCD@umd.edu, your DirectoryID is ABCD. Your zip file
should have the following things:

e Folder named Code with all your code.

e Typeset a report in I¥TEXusing the IEEETran format given to you in Draft folder.
The output file should be (pdf and pdf ONLY). Describe the pipeline with a lot of
images, intermediate outputs (include filter visualization), your implementation details
and any observations in detail with appropriate references for both sections.

e Rt.png image generated by the Evaluate.m function.

e Report your reprojection error and post a snapshot of your result in the report. Your
error should be around 0.5px.

e A Readme.txt file on how to run your code if it is not as simple as running demo .m.

If your code does not comply with the above guidelines, you’ll be given ZERO credit.

3 Allowed Matlab functions

All general MATLAB functions except calibration functions.

4 Collaboration Policy

You are restricted to discuss the ideas with at most two other people. But the code you turn-
in should be your own and if you DO USE (try not it and it is not permitted) other external
codes/codes from other students - do cite them. For other honor code refer to the CMSC733
Spring 2017 website here https://www.cs.umd.edu/class/spring2017/cmsc733/.

Acknowledgements

This fun project was inspired from ‘Machine Perception’ (CIS 580) course of University of
Pennsylvania (https://fling.seas.upenn.edu/~cis580/wiki/index.php?title=Homeworks_
Spring_2016).

Thanks to Siddharth Mysore from University of Pennsylvania for help with some of the
source codes.

DON’T FORGET TO HAVE FUN AND PLAY AROUND WITH IMAGES!.

References

[1] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transactions
on pattern analysis and machine intelligence, 22(11):1330-1334, 2000.

https://www.cs.umd.edu/class/spring2017/cmsc733/
https://fling.seas.upenn.edu/~cis580/wiki/index.php?title=Homeworks_Spring_2016
https://fling.seas.upenn.edu/~cis580/wiki/index.php?title=Homeworks_Spring_2016

	Data
	Initial parameter Estimation
	Solving for approximate K or camera intrinsic matrix
	Estimate approximate R and t or camera extrinsics
	Approximate Distortion kc
	Non-linear Geometric Error Minimization
	Starter Code
	Submission Guidelines

	Allowed Matlab functions
	Collaboration Policy

