
1

CMSC733 Project1: Myautopano!
Xiaoxu Meng

Department of Electrical and Computer Engineering

UMCP

Email: xiaoxumeng1993@gmail.com

Fig. 1: corner

Abstract—The aim of this project is to implement an end-
to-end pipeline to do image panorama stitching of unordered
images.

I. ALGORITHM

A. Capture Images

Simply capture a set of unordered images.

B. Find the Corners

The aim of this step is to detect corners spread all across

the image to avoid weird artifacts in warping. Implement the

following steps for ANMS:
1) Detect corner features: Detect corner features using cor-

nermetric(). The output is a matrix of corner scores. Visualize

the output using imagesc(). The result is shown in Fig. 1.
2) Find Strong Corners: Find the Nstrong strongest corners

using the Matlab function imregionalmax(). More than 3000

”corners” could be found, some of which are not real corners.

Then ANMS algorithm is used to choose the best corners in

the image. I chose the strongest 490 corners and the results

are shown in Fig. 2, Fig. 3, Fig. 4. f

C. Feature Descriptor

Next step is to describe each feature point by a feature

vector. Take a patch of size 40 x 40 centered (this is very

Fig. 2: Best corners (1)

Fig. 3: Best corners (2)

important) around one corner point. Then apply gaussian blur.

Now, sub-sample the blurred output to 8 x 8. Then reshape

to obtain a 64 x 1 vector. Standardize the vector to have zero

mean and variance of 1.

D. Feature Matching

Pick one point in image 1, compute sum of square difference

between all points in image 2. Take the ratio of best match



2

Fig. 5: Match result (1)

Fig. 6: Match result (2)

(lowest distance) to the second best match (second lowest

distance) and if this is below some ratio keep the matched

pair or reject it. Repeat this for all points in image 1. I am

left with only the confident feature correspondences and these

points will be used to estimate the transformation between the

2 images also called as Homography. Finally use the function

dispMatchedFeatures() to visualize the result as shown in Fig.

5 and Fig. 6.

E. RANSAC to estimate robust Homography

Use RANSAC to compute homography. The steps are:

1) : Select four feature pairs (at random), pi from image 1

, p1i from image 2.

2) : Compute homography H (exact). Use the function est

homography given to you.

3) : Compute inliers where SSD(p1i;Hpi) ¡ thresh. Here,

Hpi computed using the apply homography() function given

to you.
4) : Repeat the last three steps until you have exhausted

Nmax number of iterations (specified by user) or you found

more than a percentage of inliers (say 90% for example).
5) : Keep largest set of inliers.
6) : Re-compute least-squares H estimate on all of the

inliers. Use the function est homography() given to you.

F. Cylindrical Projection

When the FoV is large, to overcome the distortion problems

at edges, we will be using cylindrical projection on the images

before performing other operations. An comparison between

the image and the cylindrical image is shown in Fig. 7 and Fig.

8. For this project. We don’t need cylindrical projection for

Set1 and Set2. But for Set3, cylindrical projection is necessary



3

Fig. 4: Best corners (3)

Fig. 7: Original image

because FoV is large. However, I still use the original images

to find the inliers, perform cylindrical projection for the inliers

and use the projected inliers to calculate homography H.

G. Blending images to get a seamless panorama

To blend the image, I firstly perform transformation for the

images. Instead of using Guassian filter, I use the nearest-

neighbor algorithm to fill the black lines of the transformed

image. When transforming, I calculate the offset of coordinates

Fig. 8: Cylindrical image

of different images. And apply this offset when blending the

images. Then I build a mask to mark where the pixel is not

black. Add the mask of all the images to get where the pixels

overlap. The final image is the sum of all the images by the

mask. Results are shown in Fig. 9, Fig.10 and Fig. ??. Results

for custom sets are shown in Fig. 12, Fig.13. Results for test

sets are shown in Fig. 14, Fig.15, Fig.16 and Fig. ??.

H. Analysis and Problems

Most of the results look good and TestSet4 could report

an error. Some of the overlapping part is a little bit blurred

because of pixel-level error. The result of TestSet1 is not as

good as others because the grid is too dense. One problem I

have met is that when generating result image, the overlaping

parts are always gray as shown in Fig. 18. The reason is that

I used a mask to calculate the number of overlap. When I

perform color = (sum of color ) / (number of overlap). The

color format I used is uint8. However, the sum of uint8 has a

upper bound of 255, thus causing the wrong color.



4

Fig. 9: Result of Set1

Fig. 10: Result of Set2



5

Fig. 11: Result of Set3



6

Fig. 12: Result of Custom Set1



7

Fig. 13: Result of Custom Set2



8

Fig. 14: Result of Test Set1



9

Fig. 15: Result of Test Set2



10

Fig. 16: Result of Test Set3

Fig. 17: Result of Test Set4



11

Fig. 18: Problem


