
Computer Processing of Pictorial Information
Project 2

Huai-Jen Liang
Department of Electrical and Computer Engineering

University of Maryland
College Park, Maryland 20740

Email: r81810g.umd@gmail.com

(a) DLib (b) X. Zhu

Fig. 1: Fiducial detection.

I. INTRODUCTION

This project contains an end-to-end pipeline to do face
swapping. To form a more interesting problem, we applied
this procedure on a video. The results are presented in Fig.5.

II. METHOD

In this section, we describe the pipeline of face swapping.
At first, we assume we are going to swap faces in a pair of
images. Then, we describe the way we handled a video.

A. Face Detection with Landmarks

In order to determine the matches between two faces, we
need to find fiducial points as features first. In our method, we
used DLib[1] or X. Zhu’s code[2] to extract 18 fiducial points.
The result is shown in Fig.1. We can notice that in Fig.1b, the
corner of the left eye is wrong, so we choose DLib[1] as our
face detection.

B. Face Wrapping

After extracting features, we have the point correspondences
between two images. Using these correspondences, we can
either utilize Triangulation or ThinP lateSpline to find the
transformation.

1) Triangulation: We use the point correspondences to cre-
ate the triangulation by Delaunay triangulation. One should
notice that we only create the triangulation from destination
face and apply the result to the source face. The triangulation
results are shown in Fig.2. After having triangulation, we
calculate inverse mapping by the following procedure:

(a) Triangulation of source face (b) Triangulation of target face

Fig. 2: Triangulation.

(a) For each in the destination face, determine which triangle
it falls inside.

(b) Calculate the barycentric coordinate for each pixel in the
corresponding triangle by solving the equation:ax bx cx

ay by cy
1 1 1

αβ
γ

 =

xy
1

 (1)

where a, b, c are the three points of a triangle, (x, y) is the
pixel position and (α, β, γ) is a barycentric coordinate.

(c) Compute the corresponding pixel position in the source
image (xs, ys) byasx bsx csx

asy bsy csy
1 1 1

αβ
γ

 =

xsys
zs

 (2)

where as, bs, cs are the three points of a triangle in the
source image and (α, β, γ) is the barycentric coordinate
from Eq.2. Notice that we need to normalize the pixel
position, that is, xs = xs/zs and ys = ys/zs.

(d) Copy the pixel from (xs, ys) to (x, y) using linear inter-
polation.

2) Thin Plate Spline: Since a Thin Plate Spline(TPS) can
model arbitrary complex plane, it might be better to use Thin
Plate Spline instead of triangulation. Recall the form of a Thin
Plate Spline:



(a) Without blending (b) With blending

Fig. 3: One can easily observes that we can get a better result
if we blend the source face on the target image.

f(x, y) = a1+axx+ayy+

p∑
i=1

wiU(‖(xi, yi)− (x, y)‖) (3)

where U(r) = −r2log(r2). Given the corresponding points,
the unknown will be W = a1, ax, ay, w1, ..., wp. We can solve
it by

[
K P
PT 0

]


w1

w2

...
wp

ax
ay
1


=



v1
v2
...
vp
0
0
0


(4)

where Kij = U(‖(xi, yi)− (xj , yj)‖), vi = f(xi, yi), and
the ith row of P is (xi, yi, 1). We need to solve two Thin Plate
Spline, fx(x, y) and fy(x, y). After that, we can copy pixel
from (fx(x, y), fy(x, y)) to (x, y) using linear interpolation.

C. Blending two images

In order to combine source’s face onto target image2 with-
out strange artifacts, we have to blend two images. We applied
Possion Blending[3] and the results are shown in Fig.3.

D. Motion Filtering

In order to handle vast motion, we simply interpolate k
frames between the previous frame and the current frame. We
first calculate the difference between these two frames and
divide it to k+1 portions. At each step we add one portion to
the previous frame and insert this frame as the previous frame
for the next step.

III. RESULTS

We show the results in Fig.5. We can observe that using
Thin Plate Spline or Triangulation can get a similar result.
However, in Fig.5b, TPS doesn’t do well around the nose. The
reason is that TPS thinks the features do not lie on a plane,
and it fit the best model to the features. After wrapping the
face, the shadow becomes strange, the nose is too sharp and

(a) Before swapping (b) After swapping

(c) Before swapping (Fail) (d) Before swapping (Fail)

Fig. 4: One can easily observes that we get a bad result if we
didn’t have corresponging pixel in the source image.

the corner of an eye is stretched. From Fig.5d, we can also
observe that if face detection fails, the wrapping result will
be disaster. However, in Fig.5d, TPS wrapping gives a better
result. Because the infant’s face is twisted, the triangle is no
longer a plane and TPS can have a better model. For swapping
two faces in the same images, as in Fig.4, we have a reasonable
result. However, if there is no corresponding pixel in the source
image, it will give a bad result. One can observe that the mouth
in Fig.4d becomes creepy. Another issue is luminance. If the
luminance of two faces varies a lot, the result will be strange.
The results of the test set are shown in Fig.6. For the third test
set, we cannot do well. Since there is flash light, we cannot
distinguish a face when the luminance is unnormal.

IV. ACKNOWLEDGEMENT

Special thanks Wei-An Lin for discussion.

REFERENCES

[1] Davis E. King. Dlib-ml: A machine learning toolkit. Journal of Machine
Learning Research, 10:1755–1758, 2009.

[2] X. Zhu and D. Ramanan. Face detection, pose estimation, and landmark
localization in the wild. In 2012 IEEE Conference on Computer Vision
and Pattern Recognition, June 2012.

[3] Masayuki Tanaka, Ryo Kamio, and Masatoshi Okutomi. Seamless image
cloning by a closed form solution of a modified poisson problem. In
SIGGRAPH Asia 2012 Posters, SA ’12. ACM, 2012.



(a)

(b)

(c)

(d)

Fig. 5: Face swap. From left to right: Source, Target, Triangulation wrapping, TPS wrapping



(a)

(b)

(c)

Fig. 6: Face swap. From left to right: Source, Target, Wrapping


	Introduction
	Method
	Face Detection with Landmarks
	Face Wrapping
	Triangulation
	Thin Plate Spline

	Blending two images
	Motion Filtering

	Results
	Acknowledgement
	References

