CMSC733-Project 3: Structure From Motion

Rohan Chandra

Abstract—Structure from Motion from multiple views using
bundle adjustment. We used a different solver algorithm for non-
linear triangulation. We also iclude a pruning algorithm after non
linear triangulation that helps in reducing re-projection error.

I. VISUALSFM OUTPUT

Following is the attached result from visual sfm.

&

Fig. 1. Visual SfM output

As you can see, the results from the software are not
perfect. In this report we demonstrate that our algorithm
outperforms the results produced from this software.

II. MULTI VIEW RECONSTRUCTION

We perform the following algorithm:

A. RANSAC on matching pairs
Raw Feature Matching:

e

Fig. 2. Feature matching before RANSAC

After RANSAC:

Fig. 3. Feature matching after RANSAC

Swati Singhal

B. Fundamental Matrix Computation

F=
—1.8459¢797 —7.8618¢6 .0024
8.9358¢7% 1.2166e~°7 —0.0056
—0.0035 0.0039 1
C. Essential Matrix Computation
E =
—0.0119 —-0.9265 —0.2957
0.9906 0.0062 0.0425
0.1306 —0.2226 —0.0656

D. Re-projection Images After Non - Linear Triangulation and
PnP

This was the first roadblock that we encountered. For a
long time we were getting a huge re-projection error. This
was solved by fixing two things:

Firstly, we observed that the suggested fundamental matrix
constraint threshold of ¢ was too low and needed a larger
value. Remember, the constraint 2TFz = 0, ensures that the
points x and z lies on the epipolar plane and project the same
3D point. Besides this and other corrections suggested in the
pdf, we further observed that normalizing the fundamental
matrix was also required.

The second important fix that we made was efficient data
processing.

By carefully analyzing the re-projection results, we ob-
served that while most re-projection were perfect, few out-
lier/anomalous values resulted in very high re-projection error.
To eliminate this, we isolated the computation of each point
and filter out the results that failed to converge to a solution for
non-linear least square problem. This significantly resulted in
achieving correct the re-projections (error percentage is approx
5% or 0.05 pixels as shown in the figures below).

Fig. 4. 3D re-projection to 2D points. Blue indicate original points. Green
indicate projected points. Error is displayed at the top

Another interesting observation was that the choice of
the underneath solver for ’lsqnonlin’ function can make a
significant difference in the quality of results. With default
solver, the solution set converged for very less points and
our pruning algorithm rejects those points. Using ’slsSolver’
solver, available in the TOMLAB package, we got around
700+ converged points as oppose to 20 points by default solver.

E. 3D visualization of Linear and Non Linear Triangulated
Points

Figure 5 shows the initial results of our algorithm.

Fig. 5. Sparse Top View Reconstruction for 2 views

The two view reconstruction is sparse. Following this stage,
we register the rest of the images in succession using pose
estimation and apply bundle adjustment to get the following
reconstruction.

Fig. 8. Dense Oblique View Reconstruction after Bundle Adjustment

The dense point cloud is a serious improvement over the
sparse one. Due to use of same color, the proper shape

might not be immediately visible, e.g., the shape in side view
might appear more towards V-shape instead of U-shape .
Although we achieved near perfect results, we believe some
pruning after bundle adjustment could have further helped in
improving the quality of the results.

It is worth mentioning that the bundle adjustment package
was not easy to install and use. It took several days of
painstaking software engineering to get the package to work.
Due to compatibility issues with Mac computers, we installed
SBA (the bundle adjustment package) on a Linux machine.

I1I. EXTRA CREDIT

We used iPhone 48 to capture the following images for extra
credit:

Fig. 9. Images for Extra Credit

Selection of relevant and proper images is extremely
important for performing reconstruction. Relevance would
ensure we recover a structure that can be recognized easily
from the point cloud and proper entails using images with
’good’ feature points. It took us several tries to gather the
images that gave us sufficient feature matches.

After securing the images that we wanted, we used the
vl_feat library to perform feature detection and matching.
We found that the vl_feat library considerably outperforms
the SURF points from MATLAB. We procured over 2000
matching points from the former while obtaining only 400
from the latter.

The results of RANSAC can be shown below:

Fig. 10. RANSAC after feature matching using vl_feat SIFT points

Apart from feature matching, we were required to calibrate
the camera before taking images. In our project, we were given
both the point matches and the camera matrix, K. In order
to calibrate the camera and calculate the intrinsic matrix, we
followed the steps in homework 1 of CMSC 733 where we use
a checkerboard of square size 21.5 mm. Following calibration,
correction was made for lens distortion.

After the required processing steps of calibration and feature
matching, we apply our algorithm for calculating triangulated
and refined 3D points. The re-projection is shown in fig. 11.
The blue points(under the green) indicate the original points
and the green points indicate the re-projected points. The fact
that you see so very little blue is an indicator that our non-
linear triangulation worked perfectly.

Fig. 11. 3D reprojection of 2D points. Blue indicate original points. Green
indicate projected points.

For the purposes of demonstrating our algorithm we show
the front view of the reconstructed laptop. The front view
aligns itself in the X-Y plane. Notice the right side in fig.
12. The two red columns and the 3 little red clouds of points
on top correspond to their green counterparts in fig. 11. The
lines of code on the laptop screen are also quite visible in
our experiment.

Similarly, in fig. 13, the 'L’ shape of a laptop looked
at sideways is a perfect side-view reconstruction. The two
straight lines going outward from each side of the laptop is the
table surface. In fig. 14, we present the top view with similar
comments about the two straight lines observed in the picture.

Fig. 12. Front View of an open laptop. Notice the familiarity specially on
the right side of the reconstructed image

1
0 0g 09
o5 07
02 s 05
03 04
04 o 02

Fig. 13. Side View of an Open laptop. Notice the 'L’ shape. The straight
lines are the reconstruction of the table.

Fig. 14. Top View of an Open laptop. The straight lines going upward and
downward from the laptop are the reconstruction of the table

