CMSC 330: Organization of
Programming Languages

Working with Rust

CMSC330 Spring 2018



Installing Rust

* |nstructions, and stable installers, here:
https://www.rust-lang.org/en-US/install.html

 On a Mac or Linux (VM), open a terminal and
run curl https://sh.rustup.rs -sSf | sh

* On Windows, download+run rustup-init.exe

https://static.rust-lang.org/rustup/dist/i686-pc-
windows-gnu/rustup-init.exe



Rust compiler, build system

* Rust programs can be compiled using rustc
— Source files end in suffix .rs

— Compilation, by default, produces an executable
* No —c option

» Preferred: Use the cargo package manager
— Will invoke rustc as needed to build files
— Will download and build dependencies

— Based on a .toml file and .lock file
 You won’t have to mess with these for this class

— Like ocamlbuild



Using rustc

 Compiling and running a program

main.rs:

fn main() {
println! ("Hello, world!”)

}

rustc main.rs

3
3

./main
Hello, world!

o

(o]



Using cargo

* Make a project, build it, run it

cargo new hello cargo --bin
cd hello cargo

o o o°

=
n

Cargo.toml src/

% 1ls src tn main() {
_ println! ("Hello, world!”)
main.rs
—

}

% cargo build
Compiling hello cargo v0.1.0 (file:///..)
Finished dev [unoptimized + debuginfo]

% ./target/debug/hello cargo

Hello, world!

More at https://doc.rust-lang.org/book/second-edition/ch01-02-hello-world.html s



Rust, interactively

* Rust has no top-level a la OCaml or Ruby

e There is an in-browser execution environment

— See, for example,
https.//rustbyexample.com/hello.html

Hello World

This is the source code of the traditional Hello World program.

V/ This is the main function )
fn main() {
/7 The statements here will be executed when the compiled binary is called

/7 Print text to the console
println!("Hello World!");
}

Hello World!


https://rustbyexample.com/hello.html

