CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps (Oh my!)
Types of Finite Automata

- **Deterministic** Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - All examples so far

- **Nondeterministic** Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
 - But more expensive to test whether a string matches
Quiz 1: Which DFA matches this regexp?

\[b (b | a+b?) \]

A.

B.

C.

D. None of the above
Quiz 1: Which DFA matches this regexp?

\[b (b | a+b?) \]

A.

B.

C.

D. None of the above
Comparing DFAs and NFAs

- NFAs can have more than one transition leaving a state on the same symbol

 ![Diagram showing an NFA with multiple transitions on 'a'](image)

- DFAs allow only one transition per symbol
 - i.e., transition function must be a valid function
 - DFA is a special case of NFA
Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

- DFA transition must be labeled with symbol
 - DFA is a special case of NFA
DFA for \((a|b)^*abb\)
NFA for \((a|b)^*abb\)

- **ba**
 - Has paths to either S0 or S1
 - Neither is final, so rejected

- **babaabb**
 - Has paths to different states
 - One path leads to S3, so accepts string
NFA for \((ab|aba)^*\)

- **aba**
 - Has paths to states S0, S1

- **ababa**
 - Has paths to S0, S1
 - Need to use ε-transition
Comparing NFA and DFA for \((ab|aba)^*\)
NFA Acceptance Algorithm Sketch

- When NFA processes a string s
 - NFA must keep track of several “current states”
 - Due to multiple transitions with same label
 - ε-transitions
 - If any current state is final when done then accept s

- Example
 - After processing “a”
 - NFA may be in states
 - S1
 - S2
 - S3
Formal Definition

- A deterministic finite automaton (DFA) is a 5-tuple $(\Sigma, Q, q_0, F, \delta)$ where
 - Σ is an alphabet
 - Q is a nonempty set of states
 - $q_0 \in Q$ is the start state
 - $F \subseteq Q$ is the set of final states
 - $\delta : Q \times \Sigma \rightarrow Q$ specifies the DFA's transitions

What's this definition saying that δ is?

- A DFA accepts s if it stops at a final state on s
Formal Definition: Example

- $\Sigma = \{0, 1\}$
- $Q = \{S0, S1\}$
- $q_0 = S0$
- $F = \{S1\}$

<table>
<thead>
<tr>
<th>input state</th>
<th>symbol</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>0</td>
<td>S0</td>
</tr>
<tr>
<td>S1</td>
<td>1</td>
<td>S1</td>
</tr>
</tbody>
</table>

or as $\{(S0,0,S0),(S0,1,S1),(S1,0,S0),(S1,1,S1)\}$
Nondeterministic Finite Automata (NFA)

An NFA is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where

- \(\Sigma, Q, q_0, F\) as with DFAs
- \(\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q\) specifies the NFA's transitions

An NFA accepts \(s\) if there is at least one path via \(s\) from the NFA’s start state to a final state

Example

- \(\Sigma = \{a\}\)
- \(Q = \{S1, S2, S3\}\)
- \(q_0 = S1\)
- \(F = \{S3\}\)
- \(\delta = \{(S1,a,S1), (S1,a,S2), (S2,\epsilon,S3)\}\)
Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages!

![Diagram showing relationships between REs, DFAs, and NFAs]

- DFA can reduce NFA
- RE can transform DFA
- RE can reduce NFA
Reducing Regular Expressions to NFAs

- Goal: Given regular expression \(A \), construct NFA: \(<A> = (\Sigma, Q, q_0, F, \delta)\)
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: \(|F| = 1\) in our NFAs
 - Recall \(F \) = set of final states

- Will define \(<A>\) for base cases: \(\sigma, \varepsilon, \emptyset \)
 - Where \(\sigma \) is a symbol in \(\Sigma \)
- And for inductive cases: \(AB, A|B, A^* \)
Reducing Regular Expressions to NFAs

- Base case: σ

$$<\sigma> = (\{\sigma\}, \{S0, S1\}, S0, \{S1\}, \{(S0, \sigma, S1)\})$$
Reduction

- Base case: ε

 $$<\varepsilon> = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset)$$

- Base case: \emptyset

 $$<\emptyset> = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset)$$
Reduction: Concatenation

- Induction: AB

\[<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \]
\[= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B) \]
Reduction: Concatenation

Induction: \(AB \)

- \(<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \)
- \(= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B) \)
- \(<AB> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \varepsilon, q_B)\}) \)
Reduction: Union

Induction: $A | B$

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
Reduction: Union

Induction: $A|B$

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $<A|B> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\}, \delta_A \cup \delta_B \cup \{(S0,\epsilon,q_A), (S0,\epsilon,q_B), (f_A,\epsilon,S1), (f_B,\epsilon,S1)\})$
Reduction: Closure

Induction: A^*

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
Reduction: Closure

Induction: A^*

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<A^*> = (\Sigma_A, Q_A \cup \{S0, S1\}, S0, \{S1\}, \delta_A \cup \{(f_A, \varepsilon, S1), (S0, \varepsilon, q_A), (S0, \varepsilon, S1), (S1, \varepsilon, S0)\})$
Quiz 2: Which NFA matches a^*?
Quiz 2: Which NFA matches a^*?
Quiz 3: Which NFA matches $a|b^*$?
Quiz 3: Which NFA matches $a|b^*$?

A.

B.

D.
Reduction Complexity

- Given a regular expression A of size n...
 - Size = # of symbols + # of operations

- How many states does $<A>$ have?
 - Two added for each $|$, two added for each $*$
 - $O(n)$
 - That’s pretty good!
Reducing NFA to DFA

DFA \quad \text{can reduce} \quad \text{NFA}

RE \quad \text{can reduce}
Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states
- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA “current states”

Example
Algorithm for Reducing NFA to DFA

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states

- Algorithm
 - Input
 - NFA (Σ, Q, q₀, Fⁿ, δ)
 - Output
 - DFA (Σ, R, r₀, Fᵈ, δ)
 - Using two subroutines
 - ε-closure(δ, p) (and ε-closure(δ, S))
 - move(δ, p, a) (and move(δ, S, a))
ε-transitions and ε-closure

- We say \(p \xrightarrow{\varepsilon} q \)
 - If it is possible to go from state \(p \) to state \(q \) by taking only \(\varepsilon \)-transitions in \(\delta \)
 - If \(\exists \ p, p_1, p_2, \ldots p_n, q \in Q \) such that
 - \(\{p,\varepsilon,p_1\} \in \delta \), \(\{p_1,\varepsilon,p_2\} \in \delta \), \ldots , \(\{p_n,\varepsilon,q\} \in \delta \)

- \(\varepsilon \)-closure(\(\delta \), \(p \))
 - Set of states reachable from \(p \) using \(\varepsilon \)-transitions alone
 - Set of states \(q \) such that \(p \xrightarrow{\varepsilon} q \) according to \(\delta \)
 - \(\varepsilon \)-closure(\(\delta \), \(p \)) = \{ \(q \mid p \xrightarrow{\varepsilon} q \) in \(\delta \) \}
 - \(\varepsilon \)-closure(\(\delta \), \(Q \)) = \{ \(q \mid p \in Q, p \xrightarrow{\varepsilon} q \) in \(\delta \) \}

- Notes
 - \(\varepsilon \)-closure(\(\delta \), \(p \)) always includes \(p \)
 - We write \(\varepsilon \)-closure(\(p \)) or \(\varepsilon \)-closure(\(Q \)) when \(\delta \) is clear from context
ε-closure: Example 1

Following NFA contains

- $S_1 \xrightarrow{\varepsilon} S_2$
- $S_2 \xrightarrow{\varepsilon} S_3$
- $S_1 \xrightarrow{\varepsilon} S_3$

Since $S_1 \xrightarrow{\varepsilon} S_2$ and $S_2 \xrightarrow{\varepsilon} S_3$

ε-closures

- ε-closure(S_1) = \{ S_1, S_2, S_3 \}
- ε-closure(S_2) = \{ S_2, S_3 \}
- ε-closure(S_3) = \{ S_3 \}
- ε-closure(\{ S_1, S_2 \}) = \{ S_1, S_2, S_3 \} \cup \{ S_2, S_3 \}
ε-closure: Example 2

- Following NFA contains:
 - $S_1 \xrightarrow{\varepsilon} S_3$
 - $S_3 \xrightarrow{\varepsilon} S_2$
 - $S_1 \xrightarrow{\varepsilon} S_2$
 - Since $S_1 \xrightarrow{\varepsilon} S_3$ and $S_3 \xrightarrow{\varepsilon} S_2$

- **ε-closures**
 - ε-closure(S_1) = $\{ S_1, S_2, S_3 \}$
 - ε-closure(S_2) = $\{ S_2 \}$
 - ε-closure(S_3) = $\{ S_2, S_3 \}$
 - ε-closure($\{ S_2, S_3 \}$) = $\{ S_2 \} \cup \{ S_2, S_3 \}$
ε-closure Algorithm: Approach

- **Input:** NFA \((\Sigma, Q, q_0, F_n, \delta)\), State Set \(R\)
- **Output:** State Set \(R'\)

Algorithm

Let \(R' = R\)

Repeat

Let \(R = R'\)

Let \(R' = R \cup \{q \mid p \in R, (p, \varepsilon, q) \in \delta\}\)

Until \(R = R'\)

This algorithm computes a **fixed point**
- see note linked from project description
ε-closure Algorithm Example

Calculate ϵ-closure(δ, {S_1})

<table>
<thead>
<tr>
<th>R</th>
<th>R'</th>
</tr>
</thead>
<tbody>
<tr>
<td>${S_1}$</td>
<td>${S_1}$</td>
</tr>
<tr>
<td>${S_1}$</td>
<td>${S_1, S_2}$</td>
</tr>
<tr>
<td>${S_1, S_2}$</td>
<td>${S_1, S_2, S_3}$</td>
</tr>
<tr>
<td>${S_1, S_2, S_3}$</td>
<td>${S_1, S_2, S_3}$</td>
</tr>
</tbody>
</table>

Let $R' = R$
Repeat
 Let $R = R'$
 Let $R' = R \cup \{q \mid p \in R, (p, \epsilon, q) \in \delta\}$
Until $R = R'$
Calculating move(p,a)

move(δ,p,a)

• Set of states reachable from p using exactly one transition on a
 ➢ Set of states q such that {p, a, q} ∈ δ
 ➢ move(δ,p,a) = \{ q | \{p, a, q\} ∈ δ \}
 ➢ move(δ,Q,a) = \{ q | p ∈ Q, \{p, a, q\} ∈ δ \}
 • i.e., can “lift” move() to start from a set of states Q

• Notes:
 ➢ move(δ,p,a) is Ø if no transition (p,a,q) ∈ δ, for any q
 ➢ We write move(p,a) or move(R,a) when δ clear from context
move(a, p) : Example 1

Following NFA
- $\Sigma = \{ a, b \}$

Move
- $\text{move}(S1, a) = \{ S2, S3 \}$
- $\text{move}(S1, b) = \emptyset$
- $\text{move}(S2, a) = \emptyset$
- $\text{move}(S2, b) = \{ S3 \}$
- $\text{move}(S3, a) = \emptyset$
- $\text{move}(S3, b) = \emptyset$

$\text{move}(\{S1, S2\}, b) = \{ S3 \}$
move(a,p) : Example 2

- Following NFA
 - $\Sigma = \{ a, b \}$

- Move
 - move(S1, a) = \{ S2 \}
 - move(S1, b) = \{ S3 \}
 - move(S2, a) = \{ S3 \}
 - move(S2, b) = Ø
 - move(S3, a) = Ø
 - move(S3, b) = Ø

$Move(\{S1,S2\},a) = \{S2,S3\}$
NFA \rightarrow DFA Reduction Algorithm ("subset")

- **Input** NFA (Σ, Q, q_0, F_n, δ), **Output** DFA (Σ, R, r_0, F_d, δ')

- **Algorithm**

 Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R
 // DFA start state
 While \exists an unmarked state $r \in R$
 // process DFA state r
 Mark r
 // each state visited once
 For each $a \in \Sigma$
 Let $E = \text{move}(\delta, r, a)$
 // states reached via a
 Let $e = \varepsilon$-closure(δ, E)
 // states reached via ε
 If $e \notin R$
 // if state e is new
 Let $R = R \cup \{e\}$
 // add e to R (unmarked)
 Let $\delta' = \delta' \cup \{r, a, e\}$
 // add transition $r \rightarrow e$
 Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$
 // final if include state in F_n
NFA → DFA Example 1

- Start = ε-closure(δ, S1) = { {S1, S3} }
- $R = \{ \{S1, S3\}\}$
- $r \in R = \{S1, S3\}$
- move(δ, {S1, S3}, a) = {S2}
 - $e = \varepsilon$-closure(δ, {S2}) = {S2}
 - $R = R \cup \{\{S2\}\} = \{\{S1, S3\}, \{S2\}\}$
 - $\delta' = \delta' \cup \{\{S1, S3\}, a, \{S2\}\}$
- move(δ, {S1, S3}, b) = \emptyset

NFA

DFA
NFA → DFA Example 1 (cont.)

- \(R = \{ \{S1,S3\}, \{S2\} \} \)
- \(r \in R = \{S2\} \)
- \(\text{move}(\delta, \{S2\}, a) = \emptyset \)
- \(\text{move}(\delta, \{S2\}, b) = \{S3\} \)
 - \(e = \varepsilon\text{-closure}(\delta, \{S3\}) = \{S3\} \)
 - \(R = R \cup \{\{S3\}\} = \{ \{S1,S3\}, \{S2\}, \{S3\} \} \)
 - \(\delta' = \delta' \cup \{\{S2\}, b, \{S3\}\} \)
NFA → DFA Example 1 (cont.)

- \(R = \{ \{S1, S3\}, \{S2\}, \{S3\} \} \)
- \(r \in R = \{S3\} \)
- \(\text{Move}(\{S3\}, a) = \emptyset \)
- \(\text{Move}(\{S3\}, b) = \emptyset \)
- Mark \(\{S3\} \), exit loop
- \(F_d = \{\{S1, S3\}, \{S3\}\} \)
 - Since \(S3 \in F_n \)
- Done!
Quiz 4: Which DFA is equivalent to this NFA?

NFA:

A.

B.

C.

D. None of the above
Quiz 4: Which DFA is equiv to this NFA?

NFA:

A.

B.

C.

D. None of the above
NFA:
Subset Algorithm as a Fixed Point

Input: NFA \((\Sigma, Q, q_0, F, \delta)\)

Output: DFA \(M'\)

Algorithm

Let \(q_0' = \varepsilon\)-closure\((\delta, q_0)\)
Let \(F' = \{q_0'\}\) if \(q_0' \cap F \neq \emptyset\), or \(\emptyset\) otherwise

Let \(M' = (\Sigma, \{q_0'\}, q_0', F', \emptyset)\) // starting approximation of DFA

Repeat

Let \(M = M'\) // current DFA approx
For each \(q \in \text{states}(M), a \in \Sigma\) // for each DFA state \(q\) and letter \(a\)

Let \(s = \varepsilon\)-closure\((\delta, \text{move}(\delta, q, a))\) // new subset from \(q\)
Let \(F' = \{s\}\) if \(s \cap F \neq \emptyset\), or \(\emptyset\) otherwise, // subset contains final?
\(M' = M' \cup (\emptyset, \{s\}, \emptyset, F', \{(q, a, s)\})\) // update DFA

Until \(M' = M\) // reached fixed point
Redux: DFA to NFA Example 1

- $q_0' = \varepsilon$-closure($\delta, S_1) = \{S_1, S_3\}$
- $F' = \{\{S_1, S_3\}\}$ since $\{S_1, S_3\} \cap \{S_3\} \neq \emptyset$

- $M' = \{ \Sigma, \{\{S_1, S_3\}\}, \{S_1, S_3\}, \{\{S_1, S_3\}\}, \emptyset \}$
Redux: DFA to NFA Example 1 (cont)

- \(M' = \{ \Sigma, \{\{S1,S3\}\}, \{S1,S3\}, \{\{S1,S3\}\}, \emptyset \} \)
 - \(q = \{S1, S3\} \)
 - \(a = a \)
 - \(s = \{S2\} \)
 - \(\text{since } \text{move}(\delta,\{S1, S3\},a) = \{S2\} \)
 - \(\text{and } \varepsilon\text{-closure}(\delta,\{S2\}) = \{S2\} \)
 - \(F' = \emptyset \)
 - \(\text{Since } \{S2\} \cap \{S3\} = \emptyset \)
 - \(\text{where } s = \{S2\} \text{ and } F = \{S3\} \)

- \(M' = M' \cup (\emptyset, \{\{S2\}\}, \emptyset, \emptyset, \{\{\{S1,S3\},a,\{S2\}\}\}) \)
- \(= \{ \Sigma, \{\{S1,S3\},\{S2\}\}, \{S1,S3\}, \{\{S1,S3\}\}, \{\{\{S1,S3\},a,\{S2\}\}\} \} \)
Redux: DFA to NFA Example 1 (cont)

- $M' = \{ \Sigma, \{\{S1,S3\},\{S2\}\}, \{S1,S3\}, \{\{S1,S3\}\}, \{\{\{S1,S3\},a,\{S2\}\}\}\}$
- $q = \{S2\}$
- $a = b$
- $s = \{S3\}$
 - since move($\delta,\{S2\},b) = \{S3\}$
 - and ε-closure($\delta,\{S3\}) = \{S3\}$
- $F' = \{\{S3\}\}$
 - Since $\{S3\} \cap \{S3\} = \{S3\}$
 - where $s = \{S3\}$ and $F = \{S3\}$

- $M' = M' \cup$

 $\{ \emptyset, \{\{S3\}\}, \emptyset, \{\{S3\}\}, \{\{\{S2\},b,\{S3\}\}\}\}$

 $= \{ \Sigma, \{\{S1,S3\},\{S2\},\{S3\}\}, \{S1,S3\}, \{\{S1,S3\},\{S3\}\}, \{\{\{S1,S3\},a,\{S2\}\}, \{\{S2\},b,\{S3\}\}\}\}$

Q' q'_0 F' δ'
Analyzing the Reduction

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with n states, DFA may have 2^n states
 - Since a set with n items may have 2^n subsets
 - Corollary
 - Reducing a NFA with n states may be $O(2^n)$
Reducing DFA to RE
Reducing DFAs to REs

General idea

- Remove states one by one, labeling transitions with regular expressions
- When two states are left (start and final), the transition label is the regular expression for the DFA
Other Topics

- Minimizing DFA
 - Hopcroft reduction
- Complementing DFA
- Implementing DFA
Minimizing DFAs

- Every regular language is recognizable by a unique minimum-state DFA
 - Ignoring the particular names of states
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
Minimizing DFA: Hopcroft Reduction

- **Intuition**
 - Look to distinguish states from each other
 - End up in different accept / non-accept state with identical input

- **Algorithm**
 - Construct initial partition
 - Accepting & non-accepting states
 - Iteratively split partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states \(x, y \) belong in same partition if and only if for all symbols in \(\Sigma \) they transition to the same partition
 - Update transitions & remove dead states

J. Hopcroft, “An n log n algorithm for minimizing states in a finite automaton,” 1971
Splitting Partitions

- No need to split partition \{S,T,U,V\}
 - All transitions on \textit{a} lead to identical partition \(P_2\)
 - Even though transitions on \textit{a} lead to different states

\begin{figure}[h]
\centering
\begin{tikzpicture}[node distance=1.5cm,auto,]
 \node (S) [state] {S};
 \node (T) [state, below of=S] {T};
 \node (U) [state, left of=T] {U};
 \node (V) [state, below of=U] {V};
 \node (X) [state, right of=T] {X};
 \node (Y) [state, below of=X] {Y};
 \node (Z) [state, below of=Y] {Z};

 \path[->, thick, draw=black]
 (S) edge node {a} (T)
 (T) edge node {a} (U)
 (U) edge node {a} (V)
 (X) edge node {a} (Y)
 (X) edge node {a} (Z);
\end{tikzpicture}
\caption{Diagram of state transitions}
\end{figure}
Splitting Partitions (cont.)

- Need to split partition \{S,T,U\} into \{S,T\}, \{U\}
 - Transitions on \(a\) from \(S,T\) lead to partition \(P_2\)
 - Transition on \(a\) from \(U\) lead to partition \(P_3\)

![Diagram showing transitions and partitions]

- From partition \(P_1\): \(S\) to \(T\) and \(U\) to \(S\), \(T\) are in the same group, \(U\) is in a different group.
- From partition \(P_2\): \(X\) to \(Y\) and \(Z\) are in the same group, \(X\) is in a different group.
- From partition \(P_4\): \(U\) to \(T\) and \(S\) to \(U\), \(T\) and \(S\) are in the same group, \(U\) is in a different group.

The transitions between the partitions indicate how the partitions are related and how the elements are moved between groups.
Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \{S,T,U\}
 - After splitting partition \{X,Y\} into \{X\}, \{Y\} we need to split partition \{S,T,U\} into \{S,T\}, \{U\}

![Diagram of partition resplitting](image)
Minimizing DFA: Example 1

- DFA

- Initial partitions

- Split partition
Minimizing DFA: Example 1

- DFA

- Initial partitions
 - Accept \{ R \} = P1
 - Reject \{ S, T \} = P2

- Split partition? → Not required, minimization done
 - move(S,a) = T ∈ P2
 - move(S,b) = R ∈ P1
 - move(T,a) = T ∈ P2
 - move(T,b) = R ∈ P1
Minimizing DFA: Example 2
Minimizing DFA: Example 2

- **DFA**

- **Initial partitions**
 - Accept \(\{ R \} \) = P1
 - Reject \(\{ S, T \} \) = P2

- **Split partition? → Yes, different partitions for B**
 - \(\text{move}(S,a) = T \in P2 \) – \(\text{move}(S,b) = T \in P2 \)
 - \(\text{move}(T,a) = T \in P2 \) – \(\text{move}(T,b) = R \in P1 \)
Complement of DFA

- Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA
 - $\Sigma = \{a, b\}$
Complement of DFA

Algorithm

• Add explicit transitions to a dead state
• Change every accepting state to a non-accepting state & every non-accepting state to an accepting state

Note this only works with DFAs

• Why not with NFAs?
Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA

cur_state = 0;
while (1) {
 symbol = getchar();
 switch (cur_state) {
 case 0:
 switch (symbol) {
 case '0': cur_state = 0; break;
 case '1': cur_state = 1; break;
 case '\n': printf("rejected\n"); return 0;
 default: printf("rejected\n"); return 0;
 }
 break;
 case 1:
 switch (symbol) {
 case '0': cur_state = 0; break;
 case '1': cur_state = 1; break;
 case '\n': printf("accepted\n"); return 1;
 default: printf("rejected\n"); return 0;
 }
 break;
 default: printf("unknown state; I'm confused\n");
 break;
 }
}

CMSC 330 Spring 2018
Implementing DFAs (generic)

More generally, use generic table-driven DFA

given components \((\Sigma, Q, q_0, F, \delta)\) of a DFA:
let \(q = q_0\)
while (there exists another symbol \(s\) of the input string)
 \(q := \delta(q, s)\);
if \(q \in F\) then
 accept
else reject

• \(q\) is just an integer
• Represent \(\delta\) using arrays or hash tables
• Represent \(F\) as a set
Running Time of DFA

- How long for DFA to decide to accept/reject string s?
 - Assume we can compute $\delta(q, c)$ in constant time
 - Then time to process s is $O(|s|)$
 - Can’t get much faster!

- Constructing DFA for RE A may take $O(2^{|A|})$ time
 - But usually not the case in practice

- So there’s the initial overhead
 - But then processing strings is fast
Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA

- Equivalence of RE, NFA, DFA
 - RE \rightarrow NFA
 - Concatenation, union, closure
 - NFA \rightarrow DFA
 - ε-closure & subset algorithm

- DFA
 - Minimization, complement
 - Implementation