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Front End – Scanner and Parser
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• Scanner / lexer converts program source into 
tokens (keywords, variable names, operators, 
numbers, etc.) using regular expressions

• Parser converts tokens into an AST (abstract 
syntax tree) using context free grammars
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Context-Free Grammar (CFG)

A way of describing sets of strings (= languages)

• The notation L(G) denotes the language of strings 

defined by grammar G

Example grammar G is S ® 0S | 1S | e
which says that string s’ ∊ L(G) iff

• s’ = e, or ∃s ∊ L(G) such that s’ = 0s, or s’ = 1s

Grammar is same as regular expression (0|1)* 

• Generates / accepts the same set of strings
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CFGs Are Expressive

CFGs subsume REs, DFAs, NFAs
• There is a CFG that generates any regular language
• But: REs are often better notation for those languages

And CFGs can define languages regexps cannot
• S ® ( S ) | e // represents balanced pairs of ( )�s

As a result, CFGs often used as the basis of 
parsers for programming languages
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Parsing with CFGs

CFGs formally define languages, but they do 
not define an algorithm for accepting strings
Several styles of algorithm; each works only for 
less expressive forms of CFG
• LL(k) parsing
• LR(k) parsing
• LALR(k) parsing
• SLR(k) parsing

Tools exist for building parsers from grammars
• JavaCC, Yacc, etc.
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We will discuss this next lecture
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Formal Definition:  Context-Free Grammar

A CFG G is a 4-tuple (Σ, N, P, S)

• Σ – alphabet (finite set of symbols, or terminals)
Ø Often written in lowercase

• N – a finite, nonempty set of nonterminal symbols
Ø Often written in UPPERCASE
Ø It must be that N ∩ Σ = ∅

• P – a set of productions of the form N → (Σ|N)*
Ø Informally: the nonterminal can be replaced by the string of 

zero or more terminals / nonterminals to the right of the →
Ø Can think of productions as rewriting rules (more later)

• S ∊ N – the start symbol
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Notational Shortcuts

A production is of the form
• left-hand side (LHS) → right hand side (RHS)

If not specified
• Assume LHS of first production is the start symbol

Productions with the same LHS
• Are usually combined with |

If a production has an empty RHS
• It means the RHS is ε

S → aBc // S is start symbol
A → aA

|   b // A → b
| // A → e
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S → aBc

CMSC 330 Spring 2018



Backus-Naur Form
Context-free grammar production rules are also 
called Backus-Naur Form or BNF
• Designed by John Backus and Peter Naur

Ø Chair and Secretary of the Algol committee in the early 
1960s. Used this notation to describe Algol in 1962

A production A → B c D is written in BNF as  
<A> ::= <B> c <D>
• Non-terminals written with angle brackets and uses 

::= instead of →
• Often see hybrids that use ::= instead of → but drop 

the angle brackets on non-terminals
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Generating Strings

We can think of a grammar as generating
strings by rewriting
Example grammar G
S ® 0S | 1S | e
Generate string 011 from G as follows:
S ⇒ 0S // using S ® 0S
⇒ 01S // using S ® 1S
⇒ 011S // using S ® 1S
⇒ 011 // using S ® e
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Accepting Strings (Informally)

Checking if s ∈ L(G) is called acceptance
• Algorithm: Find a rewriting starting from G’s start 

symbol that yields s
• A rewriting is some sequence of productions 

(rewrites) applied starting at the start symbol
Ø 011 ∈ L(G) according to the previous rewriting

Terminology
• Such a sequence of rewrites is a derivation or parse
• Discovering the derivation is called parsing

12CMSC 330 Spring 2018



Derivations

Notation
⇒ indicates a derivation of one step
⇒+ indicates a derivation of one or more steps
⇒* indicates a derivation of zero or more steps

Example
• S ® 0S | 1S | e

For the string 010
• S ⇒ 0S ⇒ 01S ⇒ 010S ⇒ 010
• S ⇒+ 010
• 010 ⇒* 010
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Language Generated by Grammar

L(G) the language defined by G is

L(G) = { s ∊ Σ* | S ⇒+ s }

• S is the start symbol of the grammar 
• Σ is the alphabet for that grammar

In other words
• All strings over Σ that can be derived from the start 

symbol via one or more productions
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Quiz #1
Consider the grammar 

S → aS | T
T → bT | U
U → cU | ε

Which of the following strings is generated by 
this grammar?
A. ccc
B. aba
C. bab
D. ca
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Quiz #2
Consider the grammar 

S → aS | T
T → bT | U
U → cU | ε

Which of the following is a derivation of the 
string bbc?
A. S ⇒ T ⇒ U ⇒ bU ⇒ bbU ⇒ bbcU ⇒ bbc
B. S ⇒ bT ⇒ bbT ⇒ bbU ⇒ bbcU ⇒ bbc
C. S ⇒ T ⇒ bT ⇒ bbT ⇒ bbU ⇒ bbcU ⇒ bbc
D. S ⇒ T ⇒ bT ⇒ bTbT ⇒ bbT ⇒ bbcU ⇒ bbc
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Quiz #3
Consider the grammar 

S → aS | T
T → bT | U
U → cU | ε

Which of the following regular expressions 
accepts the same language as this grammar?
A. (a|b|c)*
B. abc*
C. a*b*c*
D. (a|ab|abc)*
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Designing Grammars

1. Use recursive productions to generate an 
arbitrary number of symbols

A → xA | ε // Zero or more x�s
A → yA | y // One or more y�s

2. Use separate non-terminals to generate 
disjoint parts of a language, and then combine 
in a production

a*b* // a�s followed by b�s
S → AB
A → aA | ε // Zero or more a�s
B → bB | ε // Zero or more b�s
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Designing Grammars

3. To generate languages with matching, balanced, 
or related numbers of symbols, write productions 
which generate strings from the middle

{anbn | n ≥ 0} // N a�s followed by N b�s
S → aSb | ε
Example derivation:  S ⇒ aSb ⇒ aaSbb ⇒ aabb

{anb2n | n ≥ 0} // N a�s followed by 2N b�s
S → aSbb | ε
Example derivation:  S ⇒ aSbb ⇒ aaSbbbb ⇒ aabbbb
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Designing Grammars
4. For a language that is the union of other 

languages, use separate nonterminals for each 
part of the union and then combine
{ an(bm|cm) | m > n ≥ 0}
Can be rewritten as
{ anbm | m > n ≥ 0} ∪ { ancm | m > n ≥ 0}
S → T | V
T → aTb | U
U → Ub | b
V → aVc | W
W → Wc | c
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Practice

Try to make a grammar which accepts
• 0*|1* • 0n1n where n ≥ 0

Give some example strings from this language
• S ® 0 | 1S

Ø 0, 10, 110, 1110, 11110, …

• What language is it, as a regexp?
Ø 1*0

S → A | B
A → 0A | ε
B → 1B | ε

S → 0S1 | ε
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Quiz #4

Which of the following grammars describes the 
same language as 0n1m where m ≤ n ?

A.   S → 0S1 | ε
B.   S → 0S1 | S1 | ε
C.   S → 0S1 | 0S | ε
D.   S → SS | 0 | 1 | ε
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CFGs for Language Syntax

When discussing operational semantics, we 
used BNF-style grammars to define ASTs

e ::= x | n | e + e | let x = e in e

• This grammar defined an AST for expressions 
synonymous with an OCaml datatype

We can also use this grammar to define a 
language parser
• However, while it is fine for defining ASTs, this 

grammar, if used directly for parsing, is ambiguous
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Arithmetic Expressions

E → a | b | c | E+E | E-E | E*E | (E)
• An expression E is either a letter a, b, or c
• Or an E followed by + followed by an E
• etc…

This describes (or generates) a set of strings
• {a, b, c, a+b, a+a, a*c, a-(b*a), c*(b + a), …}

Example strings not in the language
• d, c(a), a+, b**c, etc.
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Parse Trees

Parse tree shows how a string is produced by a 
grammar
• Root node is the start symbol
• Every internal node is a nonterminal
• Children of an internal node 

Ø Are symbols on RHS of production applied to nonterminal
• Every leaf node is a terminal or ε

Reading the leaves left to right 
• Shows the string corresponding to the tree
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Parse Tree Example

S → aS | T
T → bT | U
U → cU | ε

S

33

S
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Parse Tree Example

S ⇒ aS
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S

Sa
S → aS | T
T → bT | U
U → cU | ε
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Parse Tree Example

S → aS | T
T → bT | U
U → cU | ε

S ⇒ aS ⇒ aT
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Parse Tree Example

S → aS | T
T → bT | U
U → cU | ε

S ⇒ aS ⇒ aT ⇒ aU

36

S

S

T

U

a
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Parse Tree Example

S → aS | T
T → bT | U
U → cU | ε

S ⇒ aS ⇒ aT ⇒ aU ⇒ acU
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Parse Tree Example

S → aS | T
T → bT | U
U → cU | ε

S ⇒ aS ⇒ aT ⇒ aU ⇒ acU ⇒ ac
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Parse Trees for Expressions
A parse tree shows the structure of an 
expression as it corresponds to a grammar
E → a | b | c | d | E+E | E-E | E*E | (E)

a a*c c*(b+d)
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A parse tree and an AST are not the same thing
• The latter is a data structure produced by parsing

Abstract Syntax Trees
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a*c c*(b+d)

*
a c

Mult(Var(“a”),Var(“c”))

*
c +

b d
Mult(Var(“c”),Plus(Var(“b”),Var(“d”)))

Parse trees

ASTs
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Practice

E → a | b | c | d | E+E | E-E | E*E | (E)

Make a parse tree for…
• a*b
• a+(b-c)
• d*(d+b)-a
• (a+b)*(c-d)
• a+(b-c)*d
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Leftmost and Rightmost Derivation

Leftmost derivation 
• Leftmost nonterminal is replaced in each step

Rightmost derivation 
• Rightmost nonterminal is replaced in each step

Example
• Grammar

Ø S → AB, A → a, B → b

• Leftmost derivation for �ab�
Ø S ⇒ AB ⇒ aB ⇒ ab

• Rightmost derivation for �ab�
Ø S ⇒ AB ⇒ Ab ⇒ ab
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Parse Tree For Derivations

Parse tree may be same for both leftmost & 
rightmost derivations
• Example Grammar: S → a | SbS String: aba

Leftmost Derivation
S ⇒ SbS ⇒ abS ⇒ aba

Rightmost Derivation
S ⇒ SbS ⇒ Sba ⇒ aba

• Parse trees don�t show order productions are 
applied

• Every parse tree has a unique leftmost and a 
unique rightmost derivation
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Parse Tree For Derivations (cont.)

Not every string has a unique parse tree
• Example Grammar: S → a | SbS String: ababa

Leftmost Derivation
S ⇒ SbS ⇒ abS ⇒ abSbS ⇒ ababS ⇒ ababa

Another Leftmost Derivation
S ⇒ SbS ⇒ SbSbS ⇒ abSbS ⇒ ababS ⇒ ababa
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Ambiguity

A grammar is ambiguous if a string may have 
multiple leftmost derivations
• Equivalent to multiple parse trees
• Can be hard to determine

1. S → aS | T 
T → bT | U 
U → cU | ε

2. S → T | T 
T → Tx | Tx | x | x

3. S → SS | () | (S)

No

Yes

?
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Ambiguity (cont.)

Example 
• Grammar: S → SS | () | (S) String: ()()()
• 2 distinct (leftmost) derivations (and parse trees)

Ø S Þ SS Þ SSS Þ()SS Þ()()S Þ()()()
Ø S Þ SS Þ ()S Þ()SS Þ()()S Þ()()()
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CFGs for Programming Languages

Recall that our goal is to describe programming 
languages with CFGs

We had the following example which describes 
limited arithmetic expressions
E → a | b | c | E+E | E-E | E*E | (E)

What’s wrong with using this grammar?
• It’s ambiguous!
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Example:  a-b-c
E ⇒ E-E ⇒ a-E ⇒ a-E-E ⇒
a-b-E ⇒ a-b-c

E ⇒ E-E ⇒ E-E-E ⇒
a-E-E ⇒ a-b-E ⇒ a-b-c

Corresponds to a-(b-c) Corresponds to (a-b)-c
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Another Example:  If-Then-Else

<stmt> → <assignment> | <if-stmt> | ...
<if-stmt> → if (<expr>) <stmt> |

if (<expr>) <stmt> else <stmt>
(Note < >�s are used to denote nonterminals)

Consider the following program fragment
if (x > y)
if (x < z)
a = 1;

else a = 2;
(Note:  Ignore newlines)
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Aka the dangling else problem
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Two Parse Trees
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if (x > y)
if (x < z)
a = 1;

else a = 2;
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Quiz #5

Which of the following grammars is ambiguous?

A.   S → 0SS1 | 0S1 | ε

B.   S → A1S1A | ε

A → 0

C.   S → (S, S, S) | 1

D.   None of the above.
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Dealing With Ambiguous Grammars

Ambiguity is bad
• Syntax is correct
• But semantics differ depending on choice

Ø Different associativity (a-b)-c vs. a-(b-c)
Ø Different precedence (a-b)*c vs. a-(b*c)
Ø Different control flow if (if else) vs. if (if) else

Two approaches
• Rewrite grammar

Ø Grammars are not unique – can have multiple grammars 
for the same language. But result in different parses.

• Use special parsing rules
Ø Depending on parsing tool
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Fixing the Expression Grammar

Require right operand to not be bare expression
E → E+T | E-T | E*T | T
T → a | b | c | (E)

Corresponds to left associativity

Now only one parse tree for a-b-c
• Find derivation
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What if we want Right Associativity?

Left-recursive productions
• Used for left-associative operators
• Example

E → E+T | E-T | E*T | T
T → a | b | c | (E)

Right-recursive productions
• Used for right-associative operators
• Example

E → T+E | T-E | T*E | T
T → a | b | c | (E)
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Parse Tree Shape

The kind of recursion determines the shape of 
the parse tree

left recursion right recursion
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A Different Problem

How about the string a+b*c ?
E → E+T | E-T | E*T | T
T → a | b | c | (E)

Doesn’t have correct
precedence for *
• When a nonterminal has productions for several 

operators, they effectively have the same precedence

Solution – Introduce new nonterminals
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Final Expression Grammar

E → E+T | E-T | T lowest precedence operators
T → T*P | P higher precedence
P → a | b | c | (E) highest precedence (parentheses)
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Controlling precedence of operators
• Introduce new nonterminals
• Precedence increases closer to operands

Controlling associativity of operators
• Introduce new nonterminals
• Assign associativity based on production form

Ø E → E+T (left associative) vs. E → T+E (right associative)
Ø But parsing method might limit form of rules
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Conclusion

Context Free Grammars (CFGs) can describe 
programming language syntax
• They are a kind of formal language that is more 

powerful than regular expressions

CFGs can also be used as the basis for 
programming language parsers (details later)
• But the grammar should not be ambiguous

Ø May need to change more natural grammar to make it so
• Parsing often aims to produce abstract syntax trees

Ø Data structure that records the key elements of program
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