
CMSC 330: Organization of
Programming Languages

Context Free Grammars

1CMSC 330 Spring 2018

2

Front End

Abstract
Syntax Tree

Back End

Source

Compiler / Interpreter

Code
Generator

An-
alyzer

Opt-
imizer

Architecture of Compilers, Interpreters

CMSC 330 Spring 2018

Front End – Scanner and Parser

4

Front End

Source Scanner Parser

AST

Token
Stream

• Scanner / lexer converts program source into
tokens (keywords, variable names, operators,
numbers, etc.) using regular expressions

• Parser converts tokens into an AST (abstract
syntax tree) using context free grammars

CMSC 330 Spring 2018

Context-Free Grammar (CFG)

A way of describing sets of strings (= languages)

• The notation L(G) denotes the language of strings

defined by grammar G

Example grammar G is S ® 0S | 1S | e
which says that string s’ ∊ L(G) iff

• s’ = e, or ∃s ∊ L(G) such that s’ = 0s, or s’ = 1s

Grammar is same as regular expression (0|1)*

• Generates / accepts the same set of strings

5CMSC 330 Spring 2018

CFGs Are Expressive

CFGs subsume REs, DFAs, NFAs
• There is a CFG that generates any regular language
• But: REs are often better notation for those languages

And CFGs can define languages regexps cannot
• S ® (S) | e // represents balanced pairs of ()�s

As a result, CFGs often used as the basis of
parsers for programming languages

6CMSC 330 Spring 2018

Parsing with CFGs

CFGs formally define languages, but they do
not define an algorithm for accepting strings
Several styles of algorithm; each works only for
less expressive forms of CFG
• LL(k) parsing
• LR(k) parsing
• LALR(k) parsing
• SLR(k) parsing

Tools exist for building parsers from grammars
• JavaCC, Yacc, etc.

7

We will discuss this next lecture

CMSC 330 Spring 2018

Formal Definition: Context-Free Grammar

A CFG G is a 4-tuple (Σ, N, P, S)

• Σ – alphabet (finite set of symbols, or terminals)
Ø Often written in lowercase

• N – a finite, nonempty set of nonterminal symbols
Ø Often written in UPPERCASE
Ø It must be that N ∩ Σ = ∅

• P – a set of productions of the form N → (Σ|N)*
Ø Informally: the nonterminal can be replaced by the string of

zero or more terminals / nonterminals to the right of the →
Ø Can think of productions as rewriting rules (more later)

• S ∊ N – the start symbol
8CMSC 330 Spring 2018

Notational Shortcuts

A production is of the form
• left-hand side (LHS) → right hand side (RHS)

If not specified
• Assume LHS of first production is the start symbol

Productions with the same LHS
• Are usually combined with |

If a production has an empty RHS
• It means the RHS is ε

S → aBc // S is start symbol
A → aA

| b // A → b
| // A → e

9

S → aBc

CMSC 330 Spring 2018

Backus-Naur Form
Context-free grammar production rules are also
called Backus-Naur Form or BNF
• Designed by John Backus and Peter Naur

Ø Chair and Secretary of the Algol committee in the early
1960s. Used this notation to describe Algol in 1962

A production A → B c D is written in BNF as
<A> ::= c <D>
• Non-terminals written with angle brackets and uses

::= instead of →
• Often see hybrids that use ::= instead of → but drop

the angle brackets on non-terminals

10CMSC 330 Spring 2018

Generating Strings

We can think of a grammar as generating
strings by rewriting
Example grammar G
S ® 0S | 1S | e
Generate string 011 from G as follows:
S ⇒ 0S // using S ® 0S
⇒ 01S // using S ® 1S
⇒ 011S // using S ® 1S
⇒ 011 // using S ® e

11CMSC 330 Spring 2018

Accepting Strings (Informally)

Checking if s ∈ L(G) is called acceptance
• Algorithm: Find a rewriting starting from G’s start

symbol that yields s
• A rewriting is some sequence of productions

(rewrites) applied starting at the start symbol
Ø 011 ∈ L(G) according to the previous rewriting

Terminology
• Such a sequence of rewrites is a derivation or parse
• Discovering the derivation is called parsing

12CMSC 330 Spring 2018

Derivations

Notation
⇒ indicates a derivation of one step
⇒+ indicates a derivation of one or more steps
⇒* indicates a derivation of zero or more steps

Example
• S ® 0S | 1S | e

For the string 010
• S ⇒ 0S ⇒ 01S ⇒ 010S ⇒ 010
• S ⇒+ 010
• 010 ⇒* 010

13CMSC 330 Spring 2018

Language Generated by Grammar

L(G) the language defined by G is

L(G) = { s ∊ Σ* | S ⇒+ s }

• S is the start symbol of the grammar
• Σ is the alphabet for that grammar

In other words
• All strings over Σ that can be derived from the start

symbol via one or more productions

14CMSC 330 Spring 2018

Quiz #1
Consider the grammar

S → aS | T
T → bT | U
U → cU | ε

Which of the following strings is generated by
this grammar?
A. ccc
B. aba
C. bab
D. ca

15CMSC 330 Spring 2018

Quiz #1
Consider the grammar

S → aS | T
T → bT | U
U → cU | ε

Which of the following strings is generated by
this grammar?
A. ccc
B. aba
C. bab
D. ca

16CMSC 330 Spring 2018

Quiz #2
Consider the grammar

S → aS | T
T → bT | U
U → cU | ε

Which of the following is a derivation of the
string bbc?
A. S ⇒ T ⇒ U ⇒ bU ⇒ bbU ⇒ bbcU ⇒ bbc
B. S ⇒ bT ⇒ bbT ⇒ bbU ⇒ bbcU ⇒ bbc
C. S ⇒ T ⇒ bT ⇒ bbT ⇒ bbU ⇒ bbcU ⇒ bbc
D. S ⇒ T ⇒ bT ⇒ bTbT ⇒ bbT ⇒ bbcU ⇒ bbc

17CMSC 330 Spring 2018

Quiz #2
Consider the grammar

S → aS | T
T → bT | U
U → cU | ε

Which of the following is a derivation of the
string bbc?
A. S ⇒ T ⇒ U ⇒ bU ⇒ bbU ⇒ bbcU ⇒ bbc
B. S ⇒ bT ⇒ bbT ⇒ bbU ⇒ bbcU ⇒ bbc
C. S ⇒ T ⇒ bT ⇒ bbT ⇒ bbU ⇒ bbcU ⇒ bbc
D. S ⇒ T ⇒ bT ⇒ bTbT ⇒ bbT ⇒ bbcU ⇒ bbc

18CMSC 330 Spring 2018

Quiz #3
Consider the grammar

S → aS | T
T → bT | U
U → cU | ε

Which of the following regular expressions
accepts the same language as this grammar?
A. (a|b|c)*
B. abc*
C. a*b*c*
D. (a|ab|abc)*

19CMSC 330 Spring 2018

Quiz #3
Consider the grammar

S → aS | T
T → bT | U
U → cU | ε

Which of the following regular expressions
accepts the same language as this grammar?
A. (a|b|c)*
B. abc*
C. a*b*c*
D. (a|ab|abc)*

20CMSC 330 Spring 2018

Designing Grammars

1. Use recursive productions to generate an
arbitrary number of symbols

A → xA | ε // Zero or more x�s
A → yA | y // One or more y�s

2. Use separate non-terminals to generate
disjoint parts of a language, and then combine
in a production

a*b* // a�s followed by b�s
S → AB
A → aA | ε // Zero or more a�s
B → bB | ε // Zero or more b�s

23CMSC 330 Spring 2018

Designing Grammars

3. To generate languages with matching, balanced,
or related numbers of symbols, write productions
which generate strings from the middle

{anbn | n ≥ 0} // N a�s followed by N b�s
S → aSb | ε
Example derivation: S ⇒ aSb ⇒ aaSbb ⇒ aabb

{anb2n | n ≥ 0} // N a�s followed by 2N b�s
S → aSbb | ε
Example derivation: S ⇒ aSbb ⇒ aaSbbbb ⇒ aabbbb

24CMSC 330 Spring 2018

Designing Grammars
4. For a language that is the union of other

languages, use separate nonterminals for each
part of the union and then combine
{ an(bm|cm) | m > n ≥ 0}
Can be rewritten as
{ anbm | m > n ≥ 0} ∪ { ancm | m > n ≥ 0}
S → T | V
T → aTb | U
U → Ub | b
V → aVc | W
W → Wc | c

25CMSC 330 Spring 2018

Practice

Try to make a grammar which accepts
• 0*|1* • 0n1n where n ≥ 0

Give some example strings from this language
• S ® 0 | 1S

Ø 0, 10, 110, 1110, 11110, …

• What language is it, as a regexp?
Ø 1*0

S → A | B
A → 0A | ε
B → 1B | ε

S → 0S1 | ε

26CMSC 330 Spring 2018

Quiz #4

Which of the following grammars describes the
same language as 0n1m where m ≤ n ?

A. S → 0S1 | ε
B. S → 0S1 | S1 | ε
C. S → 0S1 | 0S | ε
D. S → SS | 0 | 1 | ε

27CMSC 330 Spring 2018

Quiz #4

Which of the following grammars describes the
same language as 0n1m where m ≤ n ?

A. S → 0S1 | ε
B. S → 0S1 | S1 | ε
C. S → 0S1 | 0S | ε
D. S → SS | 0 | 1 | ε

28CMSC 330 Spring 2018

CFGs for Language Syntax

When discussing operational semantics, we
used BNF-style grammars to define ASTs

e ::= x | n | e + e | let x = e in e

• This grammar defined an AST for expressions
synonymous with an OCaml datatype

We can also use this grammar to define a
language parser
• However, while it is fine for defining ASTs, this

grammar, if used directly for parsing, is ambiguous

29CMSC 330 Spring 2018

Arithmetic Expressions

E → a | b | c | E+E | E-E | E*E | (E)
• An expression E is either a letter a, b, or c
• Or an E followed by + followed by an E
• etc…

This describes (or generates) a set of strings
• {a, b, c, a+b, a+a, a*c, a-(b*a), c*(b + a), …}

Example strings not in the language
• d, c(a), a+, b**c, etc.

30CMSC 330 Spring 2018

Parse Trees

Parse tree shows how a string is produced by a
grammar
• Root node is the start symbol
• Every internal node is a nonterminal
• Children of an internal node

Ø Are symbols on RHS of production applied to nonterminal
• Every leaf node is a terminal or ε

Reading the leaves left to right
• Shows the string corresponding to the tree

32CMSC 330 Spring 2018

Parse Tree Example

S → aS | T
T → bT | U
U → cU | ε

S

33

S

CMSC 330 Spring 2018

Parse Tree Example

S ⇒ aS

34

S

Sa
S → aS | T
T → bT | U
U → cU | ε

CMSC 330 Spring 2018

Parse Tree Example

S → aS | T
T → bT | U
U → cU | ε

S ⇒ aS ⇒ aT

35

S

S

T

a

CMSC 330 Spring 2018

Parse Tree Example

S → aS | T
T → bT | U
U → cU | ε

S ⇒ aS ⇒ aT ⇒ aU

36

S

S

T

U

a

CMSC 330 Spring 2018

Parse Tree Example

S → aS | T
T → bT | U
U → cU | ε

S ⇒ aS ⇒ aT ⇒ aU ⇒ acU

37

S

S

T

U

U

a

c

CMSC 330 Spring 2018

Parse Tree Example

S → aS | T
T → bT | U
U → cU | ε

S ⇒ aS ⇒ aT ⇒ aU ⇒ acU ⇒ ac

38

S

S

T

U

U

a

c

ε

CMSC 330 Spring 2018

Parse Trees for Expressions
A parse tree shows the structure of an
expression as it corresponds to a grammar
E → a | b | c | d | E+E | E-E | E*E | (E)

a a*c c*(b+d)

39CMSC 330 Spring 2018

A parse tree and an AST are not the same thing
• The latter is a data structure produced by parsing

Abstract Syntax Trees

40

a*c c*(b+d)

*
a c

Mult(Var(“a”),Var(“c”))

*
c +

b d
Mult(Var(“c”),Plus(Var(“b”),Var(“d”)))

Parse trees

ASTs

CMSC 330 Spring 2018

Practice

E → a | b | c | d | E+E | E-E | E*E | (E)

Make a parse tree for…
• a*b
• a+(b-c)
• d*(d+b)-a
• (a+b)*(c-d)
• a+(b-c)*d

41CMSC 330 Spring 2018

42

Leftmost and Rightmost Derivation

Leftmost derivation
• Leftmost nonterminal is replaced in each step

Rightmost derivation
• Rightmost nonterminal is replaced in each step

Example
• Grammar

Ø S → AB, A → a, B → b

• Leftmost derivation for �ab�
Ø S ⇒ AB ⇒ aB ⇒ ab

• Rightmost derivation for �ab�
Ø S ⇒ AB ⇒ Ab ⇒ ab

CMSC 330 Spring 2018

43

Parse Tree For Derivations

Parse tree may be same for both leftmost &
rightmost derivations
• Example Grammar: S → a | SbS String: aba

Leftmost Derivation
S ⇒ SbS ⇒ abS ⇒ aba

Rightmost Derivation
S ⇒ SbS ⇒ Sba ⇒ aba

• Parse trees don�t show order productions are
applied

• Every parse tree has a unique leftmost and a
unique rightmost derivation

CMSC 330 Spring 2018

44

Parse Tree For Derivations (cont.)

Not every string has a unique parse tree
• Example Grammar: S → a | SbS String: ababa

Leftmost Derivation
S ⇒ SbS ⇒ abS ⇒ abSbS ⇒ ababS ⇒ ababa

Another Leftmost Derivation
S ⇒ SbS ⇒ SbSbS ⇒ abSbS ⇒ ababS ⇒ ababa

CMSC 330 Spring 2018

Ambiguity

A grammar is ambiguous if a string may have
multiple leftmost derivations
• Equivalent to multiple parse trees
• Can be hard to determine

1. S → aS | T
T → bT | U
U → cU | ε

2. S → T | T
T → Tx | Tx | x | x

3. S → SS | () | (S)

No

Yes

?

45CMSC 330 Spring 2018

Ambiguity (cont.)

Example
• Grammar: S → SS | () | (S) String: ()()()
• 2 distinct (leftmost) derivations (and parse trees)

Ø S Þ SS Þ SSS Þ()SS Þ()()S Þ()()()
Ø S Þ SS Þ ()S Þ()SS Þ()()S Þ()()()

46CMSC 330 Spring 2018

CFGs for Programming Languages

Recall that our goal is to describe programming
languages with CFGs

We had the following example which describes
limited arithmetic expressions
E → a | b | c | E+E | E-E | E*E | (E)

What’s wrong with using this grammar?
• It’s ambiguous!

47CMSC 330 Spring 2018

Example: a-b-c
E ⇒ E-E ⇒ a-E ⇒ a-E-E ⇒
a-b-E ⇒ a-b-c

E ⇒ E-E ⇒ E-E-E ⇒
a-E-E ⇒ a-b-E ⇒ a-b-c

Corresponds to a-(b-c) Corresponds to (a-b)-c
48CMSC 330 Spring 2018

Another Example: If-Then-Else

<stmt> → <assignment> | <if-stmt> | ...
<if-stmt> → if (<expr>) <stmt> |

if (<expr>) <stmt> else <stmt>
(Note < >�s are used to denote nonterminals)

Consider the following program fragment
if (x > y)
if (x < z)
a = 1;

else a = 2;
(Note: Ignore newlines)

50

Aka the dangling else problem

CMSC 330 Spring 2018

Two Parse Trees

51

if (x > y)
if (x < z)
a = 1;

else a = 2;

CMSC 330 Spring 2018

Quiz #5

Which of the following grammars is ambiguous?

A. S → 0SS1 | 0S1 | ε

B. S → A1S1A | ε

A → 0

C. S → (S, S, S) | 1

D. None of the above.

52CMSC 330 Spring 2018

Quiz #5

Which of the following grammars is ambiguous?

A. S → 0SS1 | 0S1 | ε

B. S → A1S1A | ε

A → 0

C. S → (S, S, S) | 1

D. None of the above.

53CMSC 330 Spring 2018

Dealing With Ambiguous Grammars

Ambiguity is bad
• Syntax is correct
• But semantics differ depending on choice

Ø Different associativity (a-b)-c vs. a-(b-c)
Ø Different precedence (a-b)*c vs. a-(b*c)
Ø Different control flow if (if else) vs. if (if) else

Two approaches
• Rewrite grammar

Ø Grammars are not unique – can have multiple grammars
for the same language. But result in different parses.

• Use special parsing rules
Ø Depending on parsing tool

54CMSC 330 Spring 2018

Fixing the Expression Grammar

Require right operand to not be bare expression
E → E+T | E-T | E*T | T
T → a | b | c | (E)

Corresponds to left associativity

Now only one parse tree for a-b-c
• Find derivation

56CMSC 330 Spring 2018

What if we want Right Associativity?

Left-recursive productions
• Used for left-associative operators
• Example

E → E+T | E-T | E*T | T
T → a | b | c | (E)

Right-recursive productions
• Used for right-associative operators
• Example

E → T+E | T-E | T*E | T
T → a | b | c | (E)

57CMSC 330 Spring 2018

Parse Tree Shape

The kind of recursion determines the shape of
the parse tree

left recursion right recursion

58CMSC 330 Spring 2018

A Different Problem

How about the string a+b*c ?
E → E+T | E-T | E*T | T
T → a | b | c | (E)

Doesn’t have correct
precedence for *
• When a nonterminal has productions for several

operators, they effectively have the same precedence

Solution – Introduce new nonterminals
59CMSC 330 Spring 2018

Final Expression Grammar

E → E+T | E-T | T lowest precedence operators
T → T*P | P higher precedence
P → a | b | c | (E) highest precedence (parentheses)

60

Controlling precedence of operators
• Introduce new nonterminals
• Precedence increases closer to operands

Controlling associativity of operators
• Introduce new nonterminals
• Assign associativity based on production form

Ø E → E+T (left associative) vs. E → T+E (right associative)
Ø But parsing method might limit form of rules

CMSC 330 Spring 2018

Conclusion

Context Free Grammars (CFGs) can describe
programming language syntax
• They are a kind of formal language that is more

powerful than regular expressions

CFGs can also be used as the basis for
programming language parsers (details later)
• But the grammar should not be ambiguous

Ø May need to change more natural grammar to make it so
• Parsing often aims to produce abstract syntax trees

Ø Data structure that records the key elements of program

61CMSC 330 Spring 2018

