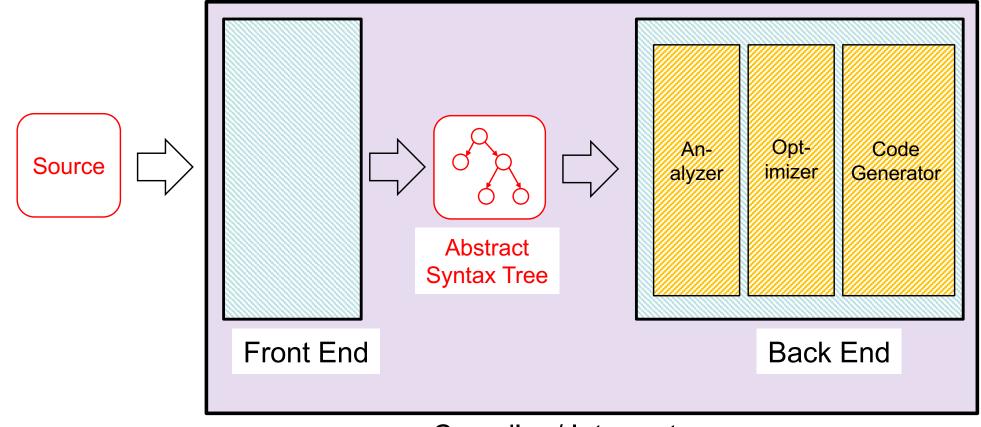
CMSC 330: Organization of Programming Languages

Context Free Grammars

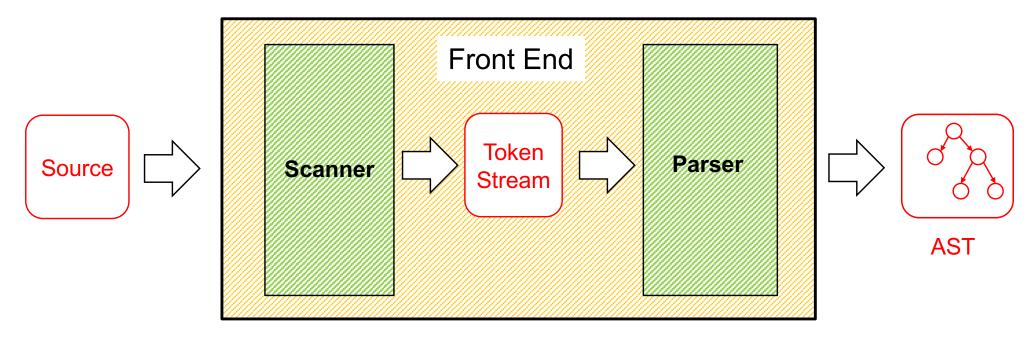
CMSC 330 Spring 2018

Architecture of Compilers, Interpreters



Compiler / Interpreter

Front End – Scanner and Parser



- Scanner / lexer converts program source into tokens (keywords, variable names, operators, numbers, etc.) using regular expressions
- Parser converts tokens into an AST (abstract syntax tree) using context free grammars

Context-Free Grammar (CFG)

- A way of describing sets of strings (= languages)
 - The notation L(G) denotes the language of strings defined by grammar G
- ► Example grammar G is S → 0S | 1S | ε which says that string s' ∈ L(G) iff
 - $s' = \varepsilon$, or $\exists s \in L(G)$ such that s' = 0s, or s' = 1s
- ▶ Grammar is same as regular expression (0|1)*
 - Generates / accepts the same set of strings

CFGs Are Expressive

- CFGs subsume REs, DFAs, NFAs
 - There is a CFG that generates any regular language
 - But: REs are often better notation for those languages
- And CFGs can define languages regexps cannot
 - $S \rightarrow (S) | \epsilon$ // represents balanced pairs of ()'s
- As a result, CFGs often used as the basis of parsers for programming languages

Parsing with CFGs

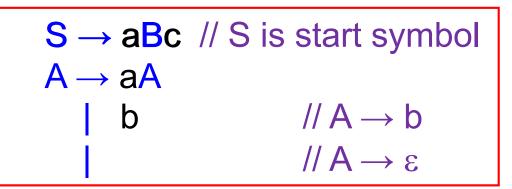
- CFGs formally define languages, but they do not define an *algorithm* for accepting strings
- Several styles of algorithm; each works only for less expressive forms of CFG

 - LR(k) parsing
 - LALR(k) parsing
 - SLR(k) parsing
- Tools exist for building parsers from grammars
 - JavaCC, Yacc, etc.

Formal Definition: Context-Free Grammar

- A CFG G is a 4-tuple (Σ, N, P, S)
 - Σ alphabet (finite set of symbols, or terminals)
 > Often written in lowercase
 - N a finite, nonempty set of nonterminal symbols
 - > Often written in UPPERCASE
 - \succ It must be that $N \cap \Sigma = \varnothing$
 - P a set of productions of the form $N \rightarrow (\Sigma | N)^*$
 - > Informally: the nonterminal can be replaced by the string of zero or more terminals / nonterminals to the right of the \rightarrow
 - Can think of productions as rewriting rules (more later)
 - S \in N the start symbol

Notational Shortcuts



- A production is of the form
 - left-hand side (LHS) \rightarrow right hand side (RHS)
- If not specified
 - Assume LHS of first production is the start symbol
- Productions with the same LHS
 - Are usually combined with |
- If a production has an empty RHS
 - It means the RHS is ε

Backus-Naur Form

- Context-free grammar production rules are also called Backus-Naur Form or BNF
 - Designed by John Backus and Peter Naur

Chair and Secretary of the Algol committee in the early 1960s. Used this notation to describe Algol in 1962

- A production A → B c D is written in BNF as <A> ::= c <D>
 - Non-terminals written with angle brackets and uses
 ::= instead of →
 - Often see hybrids that use ::= instead of → but drop the angle brackets on non-terminals

Generating Strings

- We can think of a grammar as generating strings by rewriting
- Example grammar G S \rightarrow 0S | 1S | ε
- Generate string 011 from G as follows:
 - $S \Rightarrow 0S$ // using $S \rightarrow 0S$
 - $\Rightarrow 01S$ // using S $\rightarrow 1S$
 - $\Rightarrow 011S$ // using S $\rightarrow 1S$
 - \Rightarrow 011 // using S $\rightarrow \epsilon$

Accepting Strings (Informally)

- ► Checking if s ∈ L(G) is called acceptance
 - Algorithm: Find a rewriting starting from G's start symbol that yields s
 - A rewriting is some sequence of productions (rewrites) applied starting at the start symbol
 > 011 ∈ L(G) according to the previous rewriting

Terminology

- Such a sequence of rewrites is a derivation or parse
- Discovering the derivation is called parsing

Derivations

- Notation
 - ⇒ indicates a derivation of one step
 - \Rightarrow^+ indicates a derivation of one or more steps
 - \Rightarrow^* indicates a derivation of zero or more steps
- Example
 - $S \rightarrow 0S \mid 1S \mid \epsilon$
- For the string 010
 - $S \Rightarrow 0S \Rightarrow 01S \Rightarrow 010S \Rightarrow 010$
 - S ⇒+ 010
 - 010 ⇒* 010

Language Generated by Grammar

L(G) the language defined by G is

$$L(G) = \{ s \in \Sigma^* \mid S \Rightarrow^+ s \}$$

- S is the start symbol of the grammar
- Σ is the alphabet for that grammar
- In other words
 - All strings over Σ that can be derived from the start symbol via one or more productions

Consider the grammar

 $S \rightarrow aS \mid T$ $T \rightarrow bT \mid U$ $U \rightarrow cU \mid \epsilon$

- Which of the following strings is generated by this grammar?
 - A. ccc
 - B. aba
 - C. bab
 - D.ca

CMSC 330 Spring 2018

Consider the grammar

 $S \rightarrow aS \mid T$ $T \rightarrow bT \mid U$ $U \rightarrow cU \mid \epsilon$

Which of the following strings is generated by this grammar?

A. ccc

- B. aba
- C. bab
- D.ca

CMSC 330 Spring 2018

Consider the grammar

 $S \rightarrow aS \mid T$ $T \rightarrow bT \mid U$ $U \rightarrow cU \mid \epsilon$

Which of the following is a derivation of the string bbc?

A. S \Rightarrow T \Rightarrow U \Rightarrow bU \Rightarrow bbU \Rightarrow bbcU \Rightarrow bbc

- **B.** $S \Rightarrow bT \Rightarrow bbT \Rightarrow bbU \Rightarrow bbcU \Rightarrow bbc$
- $\textbf{C}.~\textbf{S} \Rightarrow \textbf{T} \Rightarrow \textbf{b}\textbf{T} \Rightarrow \textbf{b}\textbf{b}\textbf{T} \Rightarrow \textbf{b}\textbf{b}\textbf{U} \Rightarrow \textbf{b}\textbf{b}\textbf{C} \Rightarrow \textbf{b}\textbf{b}$
- $\mathsf{D}.\ \mathsf{S} \Rightarrow \mathsf{T} \Rightarrow \mathsf{b}\mathsf{T} \Rightarrow \mathsf{b}\mathsf{T}\mathsf{b}\mathsf{T} \Rightarrow \mathsf{b}\mathsf{b}\mathsf{T} \Rightarrow \mathsf{b}\mathsf{b}\mathsf{c}\mathsf{U} \Rightarrow \mathsf{b}\mathsf{b}\mathsf{c}$

Consider the grammar

 $\begin{array}{l} S \rightarrow aS \mid T \\ T \rightarrow bT \mid U \\ U \rightarrow cU \mid \epsilon \end{array}$

Which of the following is a derivation of the string bbc?

A. S \Rightarrow T \Rightarrow U \Rightarrow bU \Rightarrow bbU \Rightarrow bbcU \Rightarrow bbc

B. $S \Rightarrow bT \Rightarrow bbT \Rightarrow bbU \Rightarrow bbcU \Rightarrow bbc$

 $C. S \Rightarrow T \Rightarrow bT \Rightarrow bbT \Rightarrow bbU \Rightarrow bbcU \Rightarrow bbc$

 $\mathsf{D}.\,\mathsf{S} \Rightarrow \mathsf{T} \Rightarrow \mathsf{b}\mathsf{T} \Rightarrow \mathsf{b}\mathsf{T}\mathsf{D}\mathsf{T} \Rightarrow \mathsf{b}\mathsf{b}\mathsf{C}\mathsf{U} \Rightarrow \mathsf{b}\mathsf{b}\mathsf{c}$

Consider the grammar

 $S \rightarrow aS \mid T$ $T \rightarrow bT \mid U$ $U \rightarrow cU \mid \epsilon$

- Which of the following regular expressions accepts the same language as this grammar?
 - A. (a|b|c)*
 - B. abc*
 - C.a*b*c*

D. (a|ab|abc)*

Consider the grammar

 $S \rightarrow aS \mid T$ $T \rightarrow bT \mid U$ $U \rightarrow cU \mid \epsilon$

- Which of the following regular expressions accepts the same language as this grammar?
 - A. (a|b|c)*
 - B. abc*

D. (a|ab|abc)*

Designing Grammars

1. Use recursive productions to generate an arbitrary number of symbols

- Use separate non-terminals to generate disjoint parts of a language, and then combine in a production
 - a^*b^* // a's followed by b's $S \rightarrow AB$ // Zero or more a's $A \rightarrow aA \mid \epsilon$ // Zero or more a's $B \rightarrow bB \mid \epsilon$ // Zero or more b's

Designing Grammars

3. To generate languages with matching, balanced, or related numbers of symbols, write productions which generate strings from the middle

 $\begin{array}{ll} \{a^nb^n \mid n \geq 0\} & // \ N \ a' \ s \ followed \ by \ N \ b' \ s \\ S \rightarrow aSb \mid \epsilon \\ Example \ derivation: \ S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb \\ \{a^nb^{2n} \mid n \geq 0\} & // \ N \ a' \ s \ followed \ by \ 2N \ b' \ s \\ S \rightarrow aSbb \mid \epsilon \\ Example \ derivation: \ S \Rightarrow aSbb \Rightarrow aaSbbbb \Rightarrow aabbbb \end{array}$

Designing Grammars

4. For a language that is the union of other languages, use separate nonterminals for each part of the union and then combine

 $\{ a^{n}(b^{m}|c^{m}) \mid m > n \ge 0 \}$

Can be rewritten as

 $\{ a^{n}b^{m} \mid m > n \ge 0 \} \cup \{ a^{n}c^{m} \mid m > n \ge 0 \}$

 $S \to T \mid V$

- $T \rightarrow aTb \mid U$
- $\mathsf{U}\to\mathsf{U}\mathsf{b}\mid\mathsf{b}$

$$V \rightarrow aVc \mid W$$

 $W \rightarrow Wc \mid c$

Practice

- Try to make a grammar which accepts
 - $0^*|1^*$ 0^n1^n where $n \ge 0$
 - $\begin{array}{ll} S \rightarrow A \mid B \\ A \rightarrow 0A \mid \epsilon & S \rightarrow 0S1 \mid \epsilon \\ B \rightarrow 1B \mid \epsilon & \end{array}$
- Give some example strings from this language
 - $S \rightarrow 0 \mid 1S$
 - ▷ 0, 10, 110, 1110, 11110, …
 - What language is it, as a regexp?
 - > 1*0

Which of the following grammars describes the same language as $0^{n}1^{m}$ where $m \le n$?

A.
$$S \rightarrow 0S1 | \epsilon$$

B. $S \rightarrow 0S1 | S1 | \epsilon$
C. $S \rightarrow 0S1 | 0S | \epsilon$
D. $S \rightarrow SS | 0 | 1 | \epsilon$

Which of the following grammars describes the same language as $0^{n}1^{m}$ where $m \le n$?

A.
$$S \rightarrow 0S1 | \epsilon$$

B. $S \rightarrow 0S1 | S1 | \epsilon$
C. $S \rightarrow 0S1 | 0S | \epsilon$
D. $S \rightarrow SS | 0 | 1 | \epsilon$

CFGs for Language Syntax

When discussing operational semantics, we used BNF-style grammars to define ASTs

e ::= x | n | e + e | let x = e in e

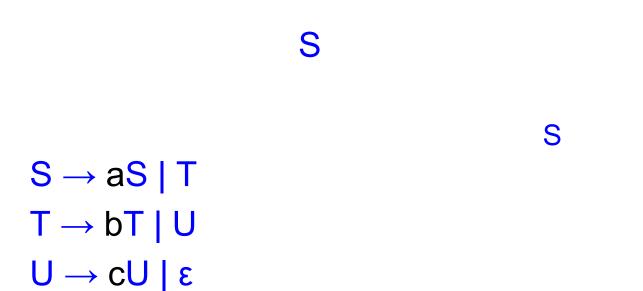
- This grammar defined an AST for expressions synonymous with an OCaml datatype
- We can also use this grammar to define a language parser
 - However, while it is fine for defining ASTs, this grammar, if used directly for parsing, is ambiguous

Arithmetic Expressions

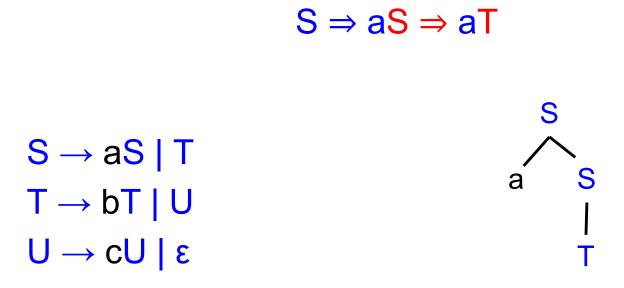
- $\mathbf{E} \rightarrow \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \mathbf{E} + \mathbf{E} \mid \mathbf{E} \mathbf{E} \mid \mathbf{E}^* \mathbf{E} \mid (\mathbf{E})$
 - An expression E is either a letter a, b, or c
 - Or an E followed by + followed by an E
 - etc...
- ► This describes (or generates) a set of strings
 - {a, b, c, a+b, a+a, a*c, a-(b*a), c*(b + a), …}
- Example strings not in the language
 - d, c(a), a+, b**c, etc.

Parse Trees

- Parse tree shows how a string is produced by a grammar
 - Root node is the start symbol
 - Every internal node is a nonterminal
 - Children of an internal node
 - > Are symbols on RHS of production applied to nonterminal
 - Every leaf node is a terminal or $\boldsymbol{\epsilon}$
- Reading the leaves left to right
 - Shows the string corresponding to the tree

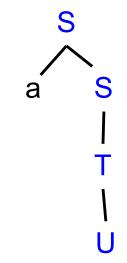


S



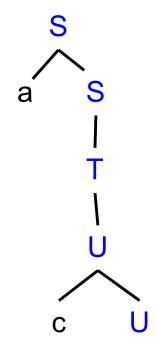
 $S \Rightarrow aS \Rightarrow aT \Rightarrow aU$

 $S \rightarrow aS \mid T$ $T \rightarrow bT \mid U$ $U \rightarrow cU \mid \epsilon$



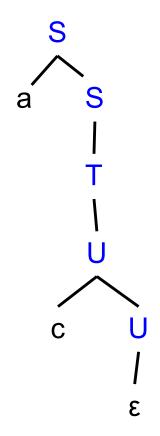
$S \Rightarrow aS \Rightarrow aT \Rightarrow aU \Rightarrow acU$

 $S \rightarrow aS \mid T$ $T \rightarrow bT \mid U$ $U \rightarrow cU \mid \epsilon$



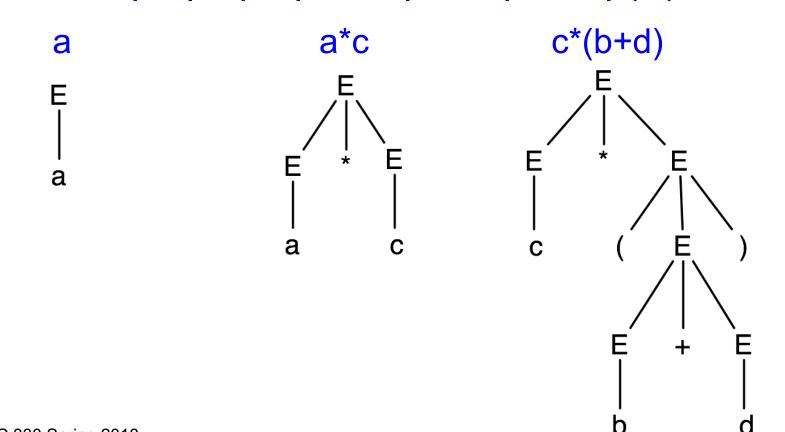
$S \Rightarrow aS \Rightarrow aT \Rightarrow aU \Rightarrow acU \Rightarrow ac$

 $S \rightarrow aS \mid T$ $T \rightarrow bT \mid U$ $U \rightarrow cU \mid \epsilon$



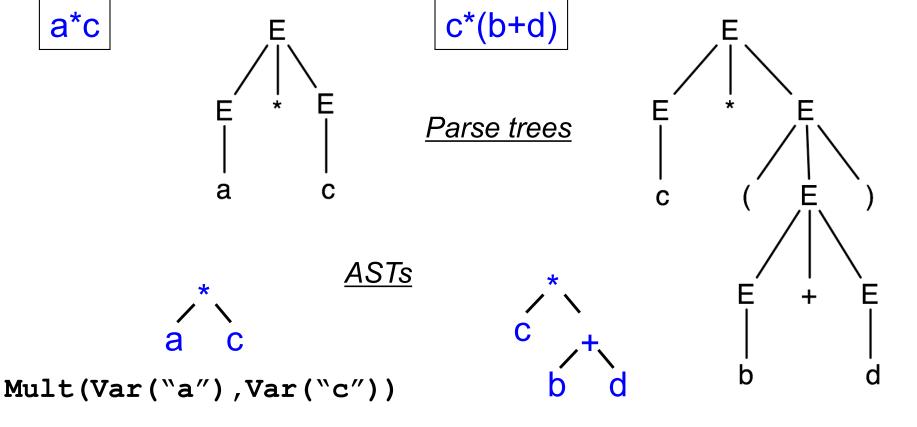
Parse Trees for Expressions

A parse tree shows the structure of an expression as it corresponds to a grammar
 E → a | b | c | d | E+E | E-E | E*E | (E)



Abstract Syntax Trees

- A parse tree and an AST are not the same thing
 - The latter is a data structure produced by parsing



Mult(Var("c"),Plus(Var("b"),Var("d")))

Practice

$E \rightarrow a \mid b \mid c \mid d \mid E+E \mid E-E \mid E^{*}E \mid (E)$

Make a parse tree for...

- a*b
- a+(b-c)
- d*(d+b)-a
- (a+b)*(c-d)
- a+(b-c)*d

Leftmost and Rightmost Derivation

- Leftmost derivation
 - Leftmost nonterminal is replaced in each step
- Rightmost derivation
 - Rightmost nonterminal is replaced in each step
- Example
 - Grammar
 - $\succ S \rightarrow AB, A \rightarrow a, B \rightarrow b$
 - Leftmost derivation for "ab"
 - $\succ S \Rightarrow AB \Rightarrow aB \Rightarrow ab$
 - Rightmost derivation for "ab"
 - $\succ S \Rightarrow AB \Rightarrow Ab \Rightarrow ab$

Parse Tree For Derivations

- Parse tree may be same for both leftmost & rightmost derivations
 - Example Grammar: $S \rightarrow a \mid SbS$ String: aba Leftmost Derivation $S \Rightarrow SbS \Rightarrow abS \Rightarrow aba$ Rightmost Derivation $S \Rightarrow SbS \Rightarrow Sba \Rightarrow aba$ a = a
 - Parse trees don't show order productions are applied
- Every parse tree has a unique leftmost and a unique rightmost derivation

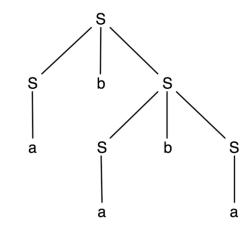
Parse Tree For Derivations (cont.)

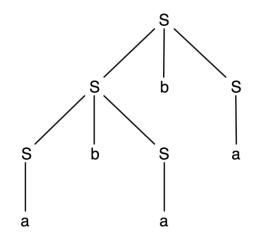
- Not every string has a unique parse tree
 - Example Grammar: S → a | SbS String: ababa Leftmost Derivation

 $S \Rightarrow SbS \Rightarrow abS \Rightarrow abSbS \Rightarrow ababS \Rightarrow ababa$

Another Leftmost Derivation

 $S \Rightarrow SbS \Rightarrow SbSbS \Rightarrow abSbS \Rightarrow ababS \Rightarrow ababa$



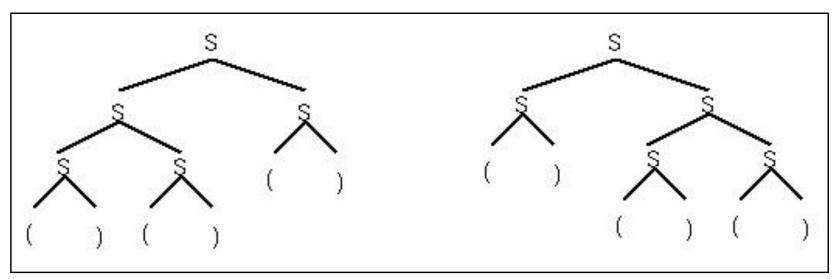


Ambiguity

- A grammar is ambiguous if a string may have multiple leftmost derivations
 - Equivalent to multiple parse trees
 - Can be hard to determine
 - 1. $S \rightarrow aS \mid T$ $T \rightarrow bT \mid U$ No $U \rightarrow cU \mid \varepsilon$ 2. $S \rightarrow T \mid T$ $T \rightarrow Tx \mid Tx \mid x \mid x$ 3. $S \rightarrow SS \mid () \mid (S)$?

Ambiguity (cont.)

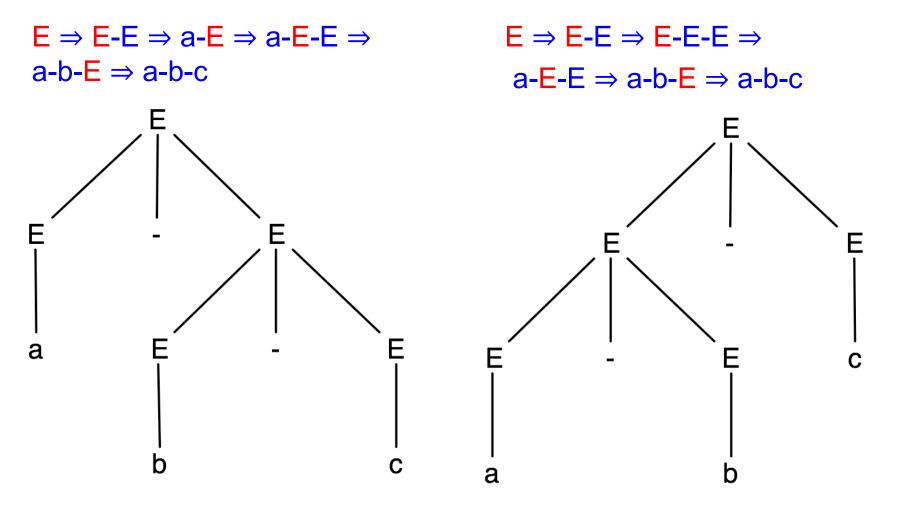
- Example
 - Grammar: $S \rightarrow SS \mid () \mid (S)$ String: ()()()
 - 2 distinct (leftmost) derivations (and parse trees)
 > S ⇒ SS ⇒ SSS ⇒()SS ⇒()()S ⇒()()()
 > S ⇒ SS ⇒ ()S ⇒()SS ⇒()()S ⇒()()()



CFGs for Programming Languages

- Recall that our goal is to describe programming languages with CFGs
- We had the following example which describes limited arithmetic expressions
 E → a | b | c | E+E | E-E | E*E | (E)
- What's wrong with using this grammar?
 - It's ambiguous!

Example: a-b-c



Corresponds to a-(b-c)

Corresponds to (a-b)-c

Another Example: If-Then-Else

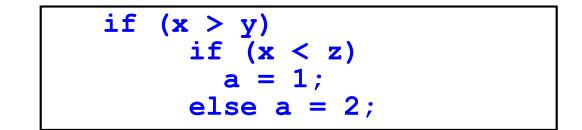
Aka the dangling else problem

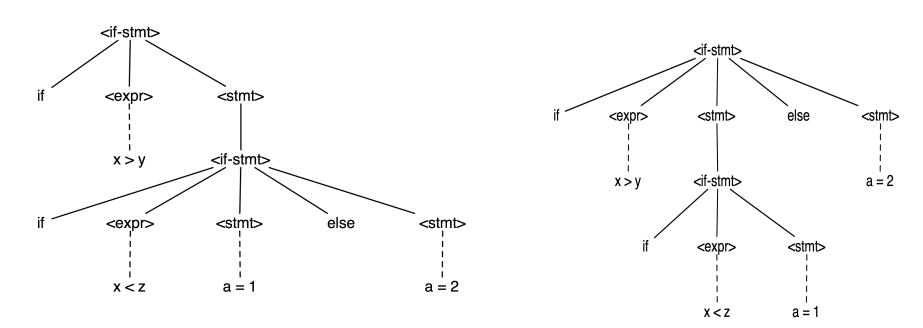
<stmt> \rightarrow <assignment> | <if-stmt> | ... <if-stmt> \rightarrow if (<expr>) <stmt> | if (<expr>) <stmt> else <stmt> (Note < >' s are used to denote nonterminals)

Consider the following program fragment

if (x > y)
 if (x < z)
 a = 1;
 else a = 2;
(Note: Ignore newlines)</pre>

Two Parse Trees





Quiz #5

Which of the following grammars is ambiguous?

- A. $S \rightarrow 0SS1 \mid 0S1 \mid \epsilon$
- B. $S \rightarrow A1S1A \mid \epsilon$

 $A \rightarrow 0$

- C. $S \rightarrow (S, S, S) \mid 1$
- D. None of the above.

Quiz #5

Which of the following grammars is ambiguous?

A.
$$S \rightarrow 0SS1 \mid 0S1 \mid \epsilon$$

B.
$$S \rightarrow A1S1A \mid \epsilon$$

$$A \rightarrow 0$$

C.
$$S \rightarrow (S, S, S) \mid 1$$

D. None of the above.

Dealing With Ambiguous Grammars

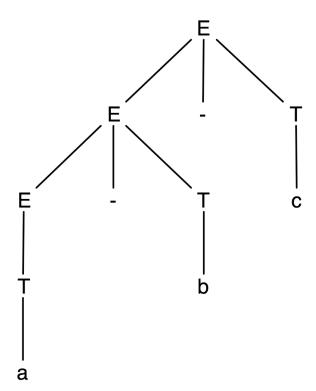
- Ambiguity is bad
 - Syntax is correct
 - But semantics differ depending on choice
 - Different associativity
 - Different precedence
 - Different control flow
- Two approaches
 - Rewrite grammar
 - Grammars are not unique can have multiple grammars for the same language. But result in different parses.
 - Use special parsing rules
 - Depending on parsing tool

(a-b)*c vs. a-(b*c) if (if else) vs. if (if) else

(a-b)-c vs. a-(b-c)

Fixing the Expression Grammar

- Require right operand to not be bare expression $E \rightarrow E+T | E-T | E^{T} | T$ $T \rightarrow a | b | c | (E)$
- Corresponds to left associativity
- Now only one parse tree for a-b-c
 - Find derivation



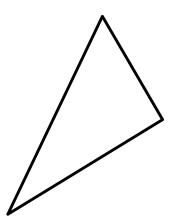
What if we want Right Associativity?

- Left-recursive productions
 - Used for left-associative operators
 - Example
 - $E \rightarrow E\text{+}T \mid E\text{-}T \mid E^{*}T \mid T$
 - $\mathsf{T} \to \mathsf{a} \mid \mathsf{b} \mid \mathsf{c} \mid (\mathsf{E})$
- Right-recursive productions
 - Used for right-associative operators
 - Example
 - $\mathsf{E} \to \mathsf{T}\text{+}\mathsf{E} \mid \mathsf{T}\text{-}\mathsf{E} \mid \mathsf{T}^{*}\mathsf{E} \mid \mathsf{T}$
 - $\mathsf{T} \to \mathsf{a} \mid \mathsf{b} \mid \mathsf{c} \mid (\mathsf{E})$

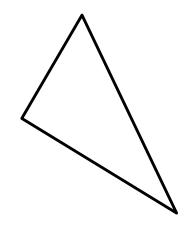
Parse Tree Shape

The kind of recursion determines the shape of the parse tree

left recursion

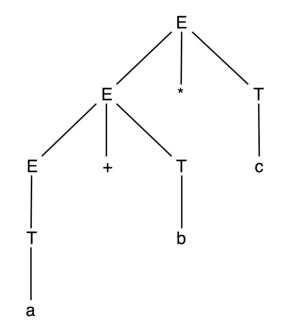


right recursion



A Different Problem

- ► How about the string $a+b^*c$? $E \rightarrow E+T | E-T | E^*T | T$ $T \rightarrow a | b | c | (E)$
- Doesn't have correct precedence for *



- When a nonterminal has productions for several operators, they effectively have the same precedence
- Solution Introduce new nonterminals

Final Expression Grammar

- $\begin{array}{ll} \mathsf{E} \to \mathsf{E} + \mathsf{T} \mid \mathsf{E} \mathsf{T} \mid \mathsf{T} & \text{lowest precedence operators} \\ \mathsf{T} \to \mathsf{T}^*\mathsf{P} \mid \mathsf{P} & \text{higher precedence} \\ \mathsf{P} \to \mathsf{a} \mid \mathsf{b} \mid \mathsf{c} \mid (\mathsf{E}) & \text{highest precedence (parentheses)} \end{array}$
- Controlling precedence of operators
 - Introduce new nonterminals
 - Precedence increases closer to operands
- Controlling associativity of operators
 - Introduce new nonterminals
 - Assign associativity based on production form
 - > E \rightarrow E+T (left associative) vs. E \rightarrow T+E (right associative)
 - > But parsing method might limit form of rules

Conclusion

- Context Free Grammars (CFGs) can describe programming language syntax
 - They are a kind of formal language that is more powerful than regular expressions
- CFGs can also be used as the basis for programming language parsers (details later)
 - But the grammar should not be ambiguous
 - > May need to change more natural grammar to make it so
 - Parsing often aims to produce abstract syntax trees
 Data structure that records the key elements of program