CMSC 330: Organization of Programming Languages

Parsing
Recall: Front End Scanner and Parser

- **Scanner / lexer / tokenizer** converts program source into **tokens** (keywords, variable names, operators, numbers, etc.) with **regular expressions**
- **Parser** converts tokens into an **AST** (abstract syntax tree) using **context free grammars**
Scanning ("tokenizing")

- Converts textual input into a stream of tokens
 - These are the terminals in the parser’s CFG
 - Example tokens are keywords, identifiers, numbers, punctuation, etc.
- Tokens determined with regular expressions
 - Identifiers match regexp \[a-zA-Z_][a-zA-Z0-9_]*
- Simplest case: a token is just a string
 - type token = string
 - But representation might be more full featured
- Scanner typically ignores/eliminates whitespace
Simple Scanner in OCaml

```ocaml

let tokenize (s:string) = ...

(* returns token list *)

let tokenize s =
    let l = String.length s in
    let rec tok sidx slen =
        if sidx >= l then ("",sidx)
        else if String.get s sidx = ' ' then
            tok (sidx+1) 1
        else if (sidx+slen) >= l then
            (String.sub s sidx slen,l)
        else if String.get s (sidx+slen) = ' ' then
            (String.sub s sidx slen, sidx+slen)
        else
            tok sidx (slen+1) in
    let rec alltoks idx =
        let (t,idx') = tok idx 1 in
        if t = "" then []
        else t::alltoks idx' in
    alltoks 0

let tokenize s =
    let l = String.length s in
    let rec tok sidx slen =
        if sidx >= l then ("",sidx)
        else if String.get s sidx = ' ' then
            tok (sidx+1) 1
        else if (sidx+slen) >= l then
            (String.sub s sidx slen,l)
        else if String.get s (sidx+slen) = ' ' then
            (String.sub s sidx slen, sidx+slen)
        else
            tok sidx (slen+1) in
    let rec alltoks idx =
        let (t,idx') = tok idx 1 in
        if t = "" then []
        else t::alltoks idx' in
    alltoks 0

```

tokenize "this is a string" = ["this"; "is"; "a"; "string"]
More Interesting Scanner

type token =
 | Tok_Num of char
 | Tok_Sum
 | Tok_END

let tokenize (s:string) = ...
 (* returns token list *)

(* returns token list *)

Uses Str library module for regexps
Implementing Parsers

- Many efficient techniques for parsing
 - I.e., for turning strings into parse trees
 - Examples
 - LL(k), SLR(k), LR(k), LALR(k)…
 - Take CMSC 430 for more details

- One simple technique: recursive descent parsing
 - This is a top-down parsing algorithm
 - Other algorithms are bottom-up
Top-Down Parsing

E → id = n | { L }
L → E ; L | ε

(Assume: id is variable name, n is integer)

Show parse tree for
{ x = 3 ; { y = 4 ; } ; }
Bottom-up Parsing

E → id = n | { L }
L → E ; L | ε

Show parse tree for
{ x = 3 ; { y = 4 ; } ; } ;

Note that final trees constructed are same as for top-down; only order in which nodes are added to tree is different
Example: Shift-Reduce Parsing

- Replaces RHS of production with LHS (nonterminal)

- Example grammar
 - $S \rightarrow aA$, $A \rightarrow Bc$, $B \rightarrow b$

- Example parse
 - abc \Rightarrow aBc \Rightarrow aA \Rightarrow S
 - Derivation happens in reverse

- Something to look forward to in CMSC 430

- Complicated to use; requires tool support
 - *Bison, yacc* produce shift-reduce parsers from CFGs
Tradeoffs

- Recursive descent parsers
 - Easy to write
 - The formal definition is a little clunky, but if you follow the code then it’s almost what you might have done if you weren't told about grammars formally
 - Fast
 - Can be implemented with a simple table
- Shift-reduce parsers handle more grammars
 - Error messages may be confusing
- Most languages use hacked parsers (!)
 - Strange combination of the two
Recursive Descent Parsing

Goal
- Determine if we can produce the string to be parsed from the grammar's start symbol

Approach
- Recursively replace nonterminal with RHS of production

At each step, we'll keep track of two facts
- What tree node are we trying to match?
- What is the lookahead (next token of the input string)?
 - Helps guide selection of production used to replace nonterminal
Recursive Descent Parsing (cont.)

At each step, 3 possible cases

• If we’re trying to match a terminal
 ➢ If the lookahead is that token, then succeed, advance the lookahead, and continue
• If we’re trying to match a nonterminal
 ➢ Pick which production to apply based on the lookahead
• Otherwise fail with a parsing error
Parsing Example

E → id = n | { L }
L → E ; L | ε

- Here \(n \) is an integer and \(id \) is an identifier

- One input might be
 - \{ x = 3; { y = 4; }; \}
 - This would get turned into a list of tokens
 \{ x = 3 ; { y = 4 ; } ; \}
 - And we want to turn it into a parse tree
Parsing Example (cont.)

\[E \rightarrow \text{id} = n \mid \{ \text{L} \} \]
\[\text{L} \rightarrow E \; ; \; \text{L} \mid \epsilon \]

\{ x = 3 ; \{ y = 4 ; \} ; \}

lookahead
Recursive Descent Parsing (cont.)

- **Key step**
 - Choosing which production should be selected

- **Two approaches**
 - **Backtracking**
 - Choose some production
 - If fails, try different production
 - Parse fails if all choices fail
 - **Predictive parsing**
 - Analyze grammar to find FIRST sets for productions
 - Compare with lookahead to decide which production to select
 - Parse fails if lookahead does not match FIRST
First Sets

- Motivating example
 - The lookahead is x
 - Given grammar $S \rightarrow xyz \mid abc$
 - Select $S \rightarrow xyz$ since 1st terminal in RHS matches x
 - Given grammar $S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z$
 - Select $S \rightarrow A$, since A can derive string beginning with x

- In general
 - Choose a production that can derive a sentential form beginning with the lookahead
 - Need to know what terminal may be first in any sentential form derived from a nonterminal / production
First Sets

Definition

• First(γ), for any terminal or nonterminal γ, is the set of initial terminals of all strings that γ may expand to
• We’ll use this to decide what production to apply

Examples

• Given grammar S → xyz | abc
 - First(xyz) = { x }, First(abc) = { a }
 - First(S) = First(xyz) U First(abc) = { x, a }
• Given grammar S → A | B A → x | y B → z
 - First(x) = { x }, First(y) = { y }, First(A) = { x, y }
 - First(z) = { z }, First(B) = { z }
 - First(S) = { x, y, z }
Calculating First(γ)

- For a terminal a
 - \(\text{First}(a) = \{ a \} \)

- For a nonterminal N
 - If \(N \to \varepsilon \), then add \(\varepsilon \) to First(N)
 - If \(N \to \alpha_1 \alpha_2 \ldots \alpha_n \), then (note the \(\alpha_i \) are all the symbols on the right side of one single production):
 - Add First(\(\alpha_1 \alpha_2 \ldots \alpha_n \)) to First(N), where First(\(\alpha_1 \alpha_2 \ldots \alpha_n \)) is defined as
 - First(\(\alpha_1 \)) if \(\varepsilon \not\in \text{First}(\alpha_1) \)
 - Otherwise (First(\(\alpha_1 \)) – \(\varepsilon \)) \(\cup \) First(\(\alpha_2 \ldots \alpha_n \))
 - If \(\varepsilon \in \text{First}(\alpha_i) \) for all \(i, 1 \leq i \leq k \), then add \(\varepsilon \) to First(N)
First() Examples

\[E \rightarrow id = n \mid \{ L \} \]
\[L \rightarrow E ; L \mid \varepsilon \]

First(id) = \{ id \}
First(\"=\") = \{ \"=\" \}
First(n) = \{ n \}
First(\"{\")= \{ \"{\" \}
First(\"}\")= \{ \"}\" \}
First(\";\")= \{ \";\" \}
First(E) = \{ id, \"{\" \}
First(L) = \{ id, \"{\", \varepsilon \} \}

First(id) = \{ id \}
First(\"=\") = \{ \"=\" \}
First(n) = \{ n \}
First(\"{\")= \{ \"{\" \}
First(\"}\")= \{ \"}\" \}
First(\";\")= \{ \";\" \}
First(E) = \{ id, \"{\", \varepsilon \} \}
First(L) = \{ id, \"{\", \";\" \} \}
Quiz #1

Given the following grammar:

\[
\begin{align*}
S & \rightarrow aAB \\
A & \rightarrow CBC \\
B & \rightarrow b \\
C & \rightarrow cC \mid \varepsilon
\end{align*}
\]

What is First(S)?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Quiz #1

Given the following grammar:

\[
\begin{align*}
S & \rightarrow aAB \\
A & \rightarrow CBC \\
B & \rightarrow b \\
C & \rightarrow cC \mid \epsilon
\end{align*}
\]

What is First(S)?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Quiz #2

Given the following grammar:

\[
S \rightarrow aAB \\
A \rightarrow CBC \\
B \rightarrow b \\
C \rightarrow cC \mid \epsilon
\]

What is First(B)?
A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Quiz #2

Given the following grammar:

\[
\begin{align*}
S & \rightarrow aAB \\
A & \rightarrow CBC \\
B & \rightarrow b \\
C & \rightarrow cC \mid \varepsilon
\end{align*}
\]

What is \textbf{First}(B)?

A. \{a\} \\
B. \{b, c\} \\
C. \{b\} \\
D. \{c\}
Quiz #3

Given the following grammar:

S → aAB
A → CBC
B → b
C → cC | ε

What is First(A)?
A. {a}
B. {b, c}
C. {b}
D. {c}
Quiz #3

Given the following grammar:

\[
\begin{align*}
S & \rightarrow aAB \\
A & \rightarrow CBC \\
B & \rightarrow b \\
C & \rightarrow cC \mid \varepsilon
\end{align*}
\]

What is First(A)?

A. \{a\}
B. \{b,c\}
C. \{b\}
D. \{c\}
Recursive Descent Parser Implementation

- For all terminals, use function `match_tok` a
 - If lookahead is `a` it consumes the lookahead by advancing the lookahead to the next token, and returns
 - Fails with a parse error if lookahead is not `a`

- For each nonterminal `N`, create a function `parse_N`
 - Called when we’re trying to parse a part of the input which corresponds to (or can be derived from) `N`
 - `parse_S` for the start symbol `S` begins the parse
match_tok in OCaml

let tok_list = ref [] (* list of parsed tokens *)

exception ParseError of string

let match_tok a =
 match !tok_list with
 (* checks lookahead; advances on match *)
 | (h::t) when a = h -> tok_list := t
 | _ -> raise (ParseError "bad match")

(* used by parse_X *)
let lookahead () =
 match !tok_list with
 [] -> raise (ParseError "no tokens")
 | (h::t) -> h
Parsing Nonterminals

- The body of parse_N for a nonterminal N does the following

 - Let $N \rightarrow \beta_1 \mid \ldots \mid \beta_k$ be the productions of N
 - Here β_i is the entire right side of a production - a sequence of terminals and nonterminals
 - Pick the production $N \rightarrow \beta_i$ such that the lookahead is in $\text{First}(\beta_i)$
 - It must be that $\text{First}(\beta_i) \cap \text{First}(\beta_j) = \emptyset$ for $i \neq j$
 - If there is no such production, but $N \rightarrow \varepsilon$ then return
 - Otherwise fail with a parse error
 - Suppose $\beta_i = \alpha_1 \alpha_2 \ldots \alpha_n$. Then call $\text{parse}_{\alpha_1}(); \ldots ; \text{parse}_{\alpha_n}()$ to match the expected right-hand side, and return
Example Parser

- Given grammar $S \rightarrow xyz \mid abc$
 - $\text{First}(xyz) = \{ x \}$, $\text{First}(abc) = \{ a \}$

- Parser

  ```
  let parse_S () =
      if lookahead () = "x" then (* S → xyz *)
          (match_tok "x";
           match_tok "y";
           match_tok "z")
      else if lookahead () = "a" then (* S → abc *)
          (match_tok "a";
           match_tok "b";
           match_tok "c")
      else raise (ParseError "parse_S")
  ```
Another Example Parser

- Given grammar $S \rightarrow A \mid B$
 $A \rightarrow x \mid y$
 $B \rightarrow z$

 - First(A) = \{ x, y \}, First(B) = \{ z \}

- Parser:

  ```ml
  let rec parse_S () =
    if lookahead () = "x" ||
        lookahead () = "y" then
      parse_A () (* S → A *)
    else if lookahead () = "z" then
      parse_B () (* S → B *)
    else raise (ParseException "parse_S")

  and parse_A () =
    if lookahead () = "x" then
      match_tok "x" (* A → x *)
    else if lookahead () = "y" then
      match_tok "y" (* A → y *)
    else raise (ParseException "parse_A")

  and parse_B () = ...
  ```
Example

\[
E \rightarrow \text{id} = n \mid \{ L \} \\
L \rightarrow E ; L \mid \epsilon
\]

First(E) = \{ id, "{" \}

Parser:

let rec parse_E () =
 if lookahead () = "id" then
 (* E \rightarrow id = n *)
 (match_tok "id";
 match_tok "=";
 match_tok "n")
 else if lookahead () = "{" then
 (* E \rightarrow \{ L \} *)
 (match_tok "{";
 parse_L ();
 match_tok "}")
 else raise (ParseError "parse_A")

and parse_L () =
 if lookahead () = "id"
 || lookahead () = "{" then
 (* L \rightarrow E ; L *)
 (parse_E ();
 match_tok ";";
 parse_L ())
 else
 (* L \rightarrow \epsilon *)
 ()
Things to Notice

- If you draw the execution trace of the parser
 - You get the parse tree (we’ll consider ASTs later)

Examples

- Grammar

 \[S \rightarrow xyz \]

 \[S \rightarrow abc \]

- String “xyz”

  ```
  parse_S ()
  match_tok “x” / \ 
  match_tok “y” x y z
  match_tok “z”
  ```

- Grammar

 \[S \rightarrow A | B \]

 \[A \rightarrow x | y \]

 \[B \rightarrow z \]

- String “x”

  ```
  parse_S ()
  parse_A ()
  match_tok “x”
  ```

  ```
  parse_S ()
  parse_A ()
  match_tok “x”
  ```
Things to Notice (cont.)

- This is a **predictive** parser
 - Because the lookahead determines exactly which production to use

- This parsing strategy may fail on some grammars
 - Production First sets overlap
 - Production First sets contain ϵ
 - Possible infinite recursion

- Does not mean grammar is not usable
 - Just means this parsing method not powerful enough
 - May be able to change grammar
Conflicting First Sets

Consider parsing the grammar $E \rightarrow ab \mid ac$

- $\text{First}(ab) = a$
- $\text{First}(ac) = a$

Parser cannot choose between RHS based on lookahead!

Parser fails whenever $A \rightarrow \alpha_1 \mid \alpha_2$ and

- $\text{First}(\alpha_1) \cap \text{First}(\alpha_2) \neq \varepsilon$ or \emptyset

Solution

- Rewrite grammar using left factoring
Left Factoring Algorithm

Given grammar
- \(A \rightarrow x\alpha_1 \mid x\alpha_2 \mid \ldots \mid x\alpha_n \mid \beta \)

Rewrite grammar as
- \(A \rightarrow xL \mid \beta \)
- \(L \rightarrow \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_n \)

Repeat as necessary

Examples
- \(S \rightarrow ab \mid ac \) \(\Rightarrow S \rightarrow aL \) \(L \rightarrow b \mid c \)
- \(S \rightarrow abcA \mid abB \mid a \) \(\Rightarrow S \rightarrow aL \) \(L \rightarrow bcA \mid bB \mid \varepsilon \)
- \(L \rightarrow bcA \mid bB \mid \varepsilon \) \(\Rightarrow L \rightarrow bL' \mid \varepsilon \) \(L' \rightarrow cA \mid B \)
Alternative Approach

- Change structure of parser
 - First match common prefix of productions
 - Then use lookahead to choose between productions

- Example
 - Consider parsing the grammar $E \rightarrow a+b \mid a*b \mid a$

```ocaml
let parse_E () =
  match_tok "a"; (* common prefix *)
  if lookahead () = "+" then (* $E \rightarrow a+b$ *)
    (match_tok "+";
     match_tok "b")
  else if lookahead () = "+" then (* $E \rightarrow a*b$ *)
    (match_tok "*";
     match_tok "b")
  else () (* $E \rightarrow a$ *)
```
Left Recursion

Consider grammar $S \rightarrow Sa \mid \varepsilon$

- Try writing parser

```ocaml
let rec parse_S () =
  if lookahead () = "a" then
    (parse_S ();
     match tok "a") (* S → Sa *)
  else ()
```

- Body of `parse_S ()` has an infinite loop!
 - Infinite loop occurs in grammar with left recursion
Right Recursion

Consider grammar \(S \to aS \mid \epsilon \)

- Try writing parser

```ocaml
let rec parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
     parse_S ()) (* S \to aS *)
  else ()
```

- Will `parse_S()` infinite loop?
 - Invoking `match_tok` will advance lookahead, eventually stop

- Top down parsers handles grammar w/ right recursion
Algorithm To Eliminate Left Recursion

- Given grammar
 - $A \rightarrow A\alpha_1 | A\alpha_2 | \ldots | A\alpha_n | \beta$
 - β must exist or no derivation will yield a string
- Rewrite grammar as (repeat as needed)
 - $A \rightarrow \beta L$
 - $L \rightarrow \alpha_1 L | \alpha_2 L | \ldots | \alpha_n L | \varepsilon$
- Replaces left recursion with right recursion
- Examples
 - $S \rightarrow Sa | \varepsilon \quad \Rightarrow \quad S \rightarrow L \quad L \rightarrow aL | \varepsilon$
 - $S \rightarrow Sa | Sb | c \quad \Rightarrow \quad S \rightarrow cL \quad L \rightarrow aL | bL | \varepsilon$
Quiz #4

What Does the following code parse?

```
let parse_S () =
    if lookahead () = "a" then
        (match_tok "a";
         match_tok "x";
         match_tok "y")
    else if lookahead () = "q" then
        match_tok "q"
    else
        raise (ParseError "parse_S")
```

A. S -> axyq
B. S -> a | q
C. S -> aaxy | qq
D. S -> axy | q
What Does the following code parse?

```hs
let parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
     match_tok "x";
     match_tok "y")
  else if lookahead () = "q" then
    match_tok "q"
  else
    raise (ParseError "parse_S")
```

A. $S \rightarrow axyq$
B. $S \rightarrow a \mid q$
C. $S \rightarrow aaxy \mid qq$
D. $S \rightarrow axy \mid q$
Quiz #5

What Does the following code parse?

```ocaml
let rec parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
     parse_S ()
  else if lookahead () = "q" then
    (match_tok "q";
     match_tok "p")
  else
    raise (ParseError "parse_S")
```

A. S -> aS | qp
B. S -> a | S | qp
C. S -> aqSp
D. S -> a | q
Quiz #5

What Does the following code parse?

```ocaml
let rec parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
     parse_S ()
  )
else if lookahead () = "q" then
  (match_tok "q";
   match_tok "p")
else
  raise (ParseError "parse_S")
```

A. S -> aS | qp
B. S -> a | S | qp
C. S -> aqSp
D. S -> a | q
Quiz #6

Can recursive descent parse this grammar?

S -> aB
B -> bC
C -> ε | Cc

A. Yes
B. No
Quiz #6

Can recursive descent parse this grammar?

\[
\begin{align*}
S & \rightarrow aB \alpha \\
B & \rightarrow bC \\
C & \rightarrow \varepsilon | Cc
\end{align*}
\]

A. Yes
B. No
(due to left recursion)
What’s Wrong With Parse Trees?

- Parse trees contain too much information
 - Example
 - Parentheses
 - Extra nonterminals for precedence
 - This extra stuff is needed for parsing

- But when we want to reason about languages
 - Extra information gets in the way (too much detail)
Abstract Syntax Trees (ASTs)

- An abstract syntax tree is a more compact, abstract representation of a parse tree, with only the essential parts.

![Diagram of AST and parse tree]

- Parse tree:
 - `E` (root)
 - `E * E`
 - `c (E)`

- AST:
 - `*` (root)
 - `c + b d`
Abstract Syntax Trees (cont.)

Intuitively, ASTs correspond to the data structure you’d use to represent strings in the language

- Note that grammars describe trees
 - So do OCaml datatypes, as we have seen already

- $E \rightarrow a \mid b \mid c \mid E+E \mid E-E \mid E^*E \mid (E)$

```
        *
       / \  /
      c + d
     / \  /
    b   d
```
Producing an AST

To produce an AST, we can modify the `parse()` functions to construct the AST along the way

- `match_tok a` returns an AST node (leaf) for a
- `parse_A` returns an AST node for A
- AST nodes for RHS of production become children of LHS node

Example

- S → aA

```
let rec parse_S () =
  if lookahead () = "a" then
    let n1 = match_tok "a" in
    let n2 = parse_A () in
    Node(n1,n2)
  else raise ParseError "parse_S"
```

```
S / \ /
/ \ / aA
/ \ / |
```
The Compilation Process

- **Lexing**
 - regexps
 - DFAs
- **Parsing**
 - CFGs
 - PDAs
- **AST** (may not actually be constructed)
- **Intermediate Code Generation**
- **Optimization**

Source Program → **Compiler** → **Target Program**