CMSC 330: Organization of Programming Languages

OCaml
Higher Order Functions
Anonymous Functions

- Recall code blocks in Ruby

 \[
 (1..10).each \{ |x| \text{print } x \}
 \]

 - Here, we can think of \{ |x| \text{print } x \} as a function

- We can do this (and more) in OCaml
Anonymous Functions

- Passing functions around is very common
 - So often we don’t want to bother to give them names

- Use `fun` to make a function with no name

\[
\text{fun } x \rightarrow x + 3
\]

\[(\text{fun } x \rightarrow x + 3) \ 5 = 8\]
Anonymous Functions

- **Syntax**
 - `fun x1 ... xn -> e`

- **Evaluation**
 - An anonymous function is an expression
 - In fact, *it is a value* – no further evaluation is possible
 - As such, it can be passed to other functions, returned from them, stored in a variable, etc.

- **Type checking**
 - `(fun x1 ... xn -> e) : (t1 -> ... -> tn -> u)`
 - when `e : u` under assumptions `x1 : t1, ..., xn : tn`
 - (Same rule as `let f x1 ... xn = e`)
All Functions Are Anonymous

- Functions are **first-class**, so you can bind them to other names as you like

  ```
  let f x = x + 3;;
  let g = f;;
  g 5 = 8
  ```

- In fact, **let** for functions is syntactic **shorthand**

  ```
  let f x = body
  ↓
  is semantically equivalent to
  let f = fun x -> body
  ```
Example Shorthands

- `let next x = x + 1`
 - Short for `let next = fun x -> x + 1`

- `let plus x y = x + y`
 - Short for `let plus = fun x y -> x + y`

- `let rec fact n =`
 - `if n = 0 then 1 else n * fact (n-1)`
 - Short for `let rec fact = fun n -> (if n = 0 then 1 else n * fact (n-1))`
Defining Functions Everywhere

let move l x =
 let left x = x - 1 in (* locally defined fun *)
 let right x = x + 1 in (* locally defined fun *)
 if l then left x
 else right x

;;

let move' l x = (* equivalent to the above *)
 if l then (fun y -> y - 1) x
 else (fun y -> y + 1) x
Calling Functions, Generalized

- Syntax: $e_0 e_1 \ldots e_n$
- Evaluation:
 - Evaluate arguments $e_1 \ldots e_n$ to values $v_1 \ldots v_n$
 - Order is actually right to left, not left to right
 - But this doesn’t matter if $e_1 \ldots e_n$ don’t have side effects
 - Evaluate e_0 to a function $\text{fun } x_1 \ldots x_n \rightarrow e$
 - Substitute v_i for x_i in e, yielding new expression e'
 - Evaluate e' to value v, which is the final result
Calling Functions, Generalized

- Syntax \(e_0 \ e_1 \ldots \ e_n \)

- Type checking (almost the same as before)
 - If \(e_0 : t_1 \rightarrow \ldots \rightarrow t_n \rightarrow u \) and \(e_1 : t_1, \ldots, e_n : t_n \)
 then \(e_0 \ e_1 \ldots \ e_n : u \)

- Example:
 - \((\text{fun } x \rightarrow x+1) \ 1 : \text{int} \)
 - since \((\text{fun } x \rightarrow x+1) : \text{int} \rightarrow \text{int} \) and \(1 : \text{int} \)
Pattern Matching With Fun

- `match` can be used within `fun`

  ```hs
  (fun l  ->  match l with (h::_)  ->  h) [1; 2]
    = 1
  ```

- But use named functions for complicated matches
- May use standard pattern matching abbreviations

  ```hs
  (fun (x, y)  ->  x+y) (1,2)
    = 3
  ```
Quiz 1: What does this evaluate to?

let y = (fun x -> x+1) 2 in
(fun y -> y+2) y

A. Error
B. 3
C. 5
D. 2
Quiz 1: What does this evaluate to?

```
let y = (fun x -> x+1) 2 in
(fun y -> y+2) y
```

A. Error
B. 3
C. 5
D. 2
Quiz 2: What does this evaluate to?

```plaintext
let f x = 0 in
let g = f in
    g (fun i -> i+1) 1
```

A. Error
B. 2
C. 1
D. 0
Quiz 2: What does this evaluate to?

```
let f x = 0 in
let g = f in
g (fun i -> i+1) 1
```

A. Error

B. 2

C. 1

D. 0

This function has type 'a -> int
It is applied to too many arguments;
Passing Functions as Arguments

- In OCaml you can pass functions as arguments (akin to Ruby code blocks)

  ```ocaml
  let plus_three x = x + 3 (* int -> int *)
  let twice f z = f (f z) (* ('a->'a) -> 'a -> 'a *)
  twice plus_three 5 = 11
  ```

- Ruby’s `collect` is called `map` in OCaml
 - `map f l` applies function `f` to each element of `l`, and puts the results in a new list (preserving order)

  ```ocaml
  map plus_three [1; 2; 3] = [4; 5; 6]
  map (fun x -> (-x)) [1; 2; 3] = [-1; -2; -3]
  ```
The Map Function

- Let’s write the map function
 - Takes a function and a list, applies the function to each element of the list, and returns a list of the results

```
let rec map f l = match l with
    [] -> []
  | (h::t) -> (f h)::(map f t)
```

- let add_one x = x + 1
- let negate x = -x
- map add_one [1; 2; 3] = [2; 3; 4]
- map negate [9; -5; 0] = [-9; 5; 0]

- Type of map?
The Map Function (cont.)

- What is the type of the map function?

```ocaml
let rec map f l = match l with
  | []  -> []
  | (h::t) -> (f h)::(map f t)
```

(('a -> 'b) -> 'a list -> 'b list)

f

l
The Fold Function

- Common pattern
 - Iterate through list and apply function to each element, keeping track of partial results computed so far

```ocaml
let rec fold f a l = match l with
  [] -> a
| (h::t) -> fold f (f a h) t
```

- `a` = “accumulator”
- Usually called `fold_left` to remind us that `f` takes the accumulator as its first argument

- What's the type of `fold`?

  ```ocaml
  = ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
  ```
Example

```
let rec fold f a l = match l with
  []  -> a
| (h::t) -> fold f (f a h) t
```

let add a x = a + x
fold add 0 [1; 2; 3; 4] →
fold add 1 [2; 3; 4] →
fold add 3 [3; 4] →
fold add 6 [4] →
fold add 10 [] →
10

We just built the `sum` function!
Another Example

```ocaml
let rec fold f a l = match l with
  [] -> a
| (h::t) -> fold f (f a h) t
```

```
let next a _ = a + 1
fold next 0 [2; 3; 4; 5] →
fold next 1 [3; 4; 5] →
fold next 2 [4; 5] →
fold next 3 [5] →
fold next 4 [] →
4
```

We just built the `length` function!
Using Fold to Build Reverse

```ocaml
let rec fold f a l = match l with
  [] -> a
| (h::t) -> fold f (f a h) t
```

Let’s build the reverse function with fold!

```ocaml
let prepend a x = x:::a
fold prepend [] [1; 2; 3; 4] →
fold prepend [1] [2; 3; 4] →
fold prepend [2; 1] [3; 4] →
fold prepend [3; 2; 1] [4] →
fold prepend [4; 3; 2; 1] [] →
[4; 3; 2; 1]
```
Summary

- **map f** \[v_1; v_2; \ldots; v_n \]

 \[= [f v_1; f v_2; \ldots; f v_n] \]

 - e.g., \(\text{map } (\text{fun } x \rightarrow x+1) \) \[1;2;3\] = \[2;3;4\]

- **fold f** \[v \]
 \[[v_1; v_2; \ldots; v_n] \]

 \[= \text{fold } f \quad (f v v_1) \quad [v_2; \ldots; v_n] \]

 \[= \text{fold } f \quad (f(f v v_1) v_2) \quad [\ldots; v_n] \]

 \[= \ldots \]

 \[= f (f (f (f v v_1) v_2) \ldots) v_n \]

 - e.g., \(\text{fold } \text{add } 0 \) \[1;2;3;4\] = \(\text{add (add (add (add 0 1) 2) 3) 4} = 10 \)
Quiz 3: What does this evaluate to?

\[
\text{let } g \ x = x + 1 \ \text{in} \\
(f \text{un } f \ y \rightarrow f \ y) \ g \ 1
\]

A. Error
B. 2
C. 1
D. (id 2)
Quiz 3: What does this evaluate to?

\[
\text{let } g \ x = x+1 \ \text{in} \\
(f \text{un } f \ y \rightarrow f \ y) \ g \ 1
\]

A. Error
B. 2
C. 1
D. (id 2)
Quiz 4: What does this evaluate to?

```haskell
map (fun x -> x *. 4) [1;2;3]
```

A. [1.0; 2.0; 3.0]
B. [4.0; 8.0; 12.0]
C. Error
D. [4; 8; 12]
Quiz 4: What does this evaluate to?

map (fun x -> x *. 4) [1;2;3]

A. [1.0; 2.0; 3.0]
B. [4.0; 8.0; 12.0]
C. Error
D. [4; 8; 12]
Quiz 5: What does this evaluate to?

```
fold (fun a y -> y::a) [] [3;4;2]
```

A. [9]
B. [3;4;2]
C. [2;4;3]
D. Error
Quiz 5: What does this evaluate to?

\[
\text{fold } (\text{fun } a \ y \rightarrow y::a) \ [\] \ [3;4;2]
\]

A. \[9 \]
B. \[3;4;2 \]
C. \[2;4;3 \]
D. Error
Quiz 6: What does this evaluate to?

```
let is_even x = (x mod 2 = 0) in
map is_even [1;2;3;4;5]
```

A. [false;true;false;true;false]
B. [0;1;1;2;2]
C. [0;0;0;0;0]
D. false
Quiz 6: What does this evaluate to?

```
let is_even x = (x mod 2 = 0) in
map is_even [1;2;3;4;5]
```

A. [false;true;false;true;false]
B. [0;1;1;2;2]
C. [0;0;0;0;0]
D. false
Combining map and fold

- Idea: map a list to another list, and then fold over it to compute the final result
 - Basis of the famous “map/reduce” framework from Google, since these operations can be parallelized

```ocaml
let countone l = fold (fun a h -> if h=1 then a+1 else a) 0 l
let countones ss = let counts = map countone ss in fold (fun a c -> a+c) 0 counts

countones [[[1;0;1]; [0;0]; [1;1]]] = 4
countones [[[1;0]; []; [0;0]; [1]]] = 2
```
fold_right

- Right-to-left version of fold:

```ocaml
let rec fold_right f l a = match l with
  []  -> a
| (h::t) -> f h (fold_right f t a)
```

- Left-to-right version used so far:

```ocaml
let rec fold f a l = match l with
  []  -> a
| (h::t) -> fold f (f a h) t
```
Left-to-right vs. right-to-left

\[
\text{fold } f \ [v_1; v_2; \ldots; v_n] = \\
f (f (f (f v v_1) v_2) \ldots) \ v_n
\]

\[
\text{fold}_\text{right } f \ [v_1; v_2; \ldots; v_n] \ v = \\
f (f (f (f v_n v) \ldots) \ v_2) \ v_1
\]

\[
\text{fold } (\text{fun } x \ y \rightarrow x - y) \ 0 \ [1;2;3] = -6 \\
\text{since } ((0-1)-2)-3) = -6
\]

\[
\text{fold}_\text{right } (\text{fun } x \ y \rightarrow x - y) \ [1;2;3] \ 0 = 2 \\
\text{since } 1-(2-(3-0)) = 2
\]
When to use one or the other?

- Many problems lend themselves to `fold_right`
- But it does present a performance disadvantage
 - The recursion builds of a deep stack: One stack frame for each recursive call of `fold_right`
- An optimization called `tail recursion` permits optimizing `fold` so that it uses no stack at all
 - We will see how this works in a later lecture!