
CMSC 330: Organization of 
Programming Languages

Tail Recursion and 
Continuation Passing Style (CPS)



Reverse
let rec rev l = match l with

[] -> []
| (x::xs) -> (rev xs) @ [x]

• Pushes a stack frame on each recursive call
rev [1;2;3]
→ (rev [2;3]) @ [1]
→ ((rev [3]) @ [2]) @ [1]
→ (((rev []) @ [3]) @ [2]) @ [1]
→ (([] @ [3]) @ [2]) @ [1]
→ ([3] @ [2]) @ [1]
→ [3;2] @ [1]
→ [3;2;1]

CMSC 330 - Spring 2018



A Clever Version of Reverse
let rec rev_helper l a = match l with

[] -> a
| (x::xs) -> rev_helper xs (x::a)

let rev l = rev_helper l []

• No need to push a frame for each call!
rev [1;2;3] →
rev_helper [1;2;3] [] →
rev_helper [2;3] [1] →
rev_helper [3] [2;1] →
rev_helper [] [3;2;1] →
[3;2;1]

CMSC 330 - Spring 2018



Tail Recursion

• Whenever a function ends with a recursive call, 

it is called tail recursive

– Its “tail” is recursive

• Tail recursive functions can be implemented 

without requiring a stack frame for each call

– No intermediate variables need to be saved, so the 

compiler overwrites them

• Typical pattern is to use an accumulator to build 

up the result, and return it in the base case

CMSC 330 - Spring 2018



Compare rev and rev_helper

CMSC 330 - Spring 2018

let rec rev l = 
match l with
[] -> []

| (x::xs) -> (rev xs) @ [x]

let rec rev_helper l a = 
match l with
[] -> a

| (x::xs) -> rev_helper xs (x::a)

final result is the result of the recursive call

Waits for recursive call’s result to compute final result



Quiz #1

True/false: map is tail-recursive.

CMSC 330 - Spring 2018

let rec map f = function
[] -> []

| (h::t) -> (f h)::(map f t)

A. True
B. False



Quiz #1

True/false: map is tail-recursive.

CMSC 330 - Spring 2018

A. True
B.False

let rec map f = function
[] -> []

| (h::t) -> (f h)::(map f t)



Quiz #2

True/false: fold is tail-recursive

CMSC 330 - Spring 2018

A. True
B. False

let rec fold f a = function
[] -> a

| (h::t) -> fold f (f a h) t



Quiz #2

True/false: fold is tail-recursive

CMSC 330 - Spring 2018

A.True
B. False

let rec fold f a = function
[] -> a

| (h::t) -> fold f (f a h) t



Quiz #3

True/false: fold_right is tail-recursive

CMSC 330 - Spring 2018

A. True
B. False

let rec fold_right f l a = 
match l with
[] -> a

| (h::t) -> f h (fold_right f t a)



Quiz #3

True/false: fold_right is tail-recursive

CMSC 330 - Spring 2018

A. True
B.False

let rec fold_right f l a = 
match l with
[] -> a

| (h::t) -> f h (fold_right f t a)



Tail Recursion is Important

• Pushing a call frame for each recursive call 
when operating on a list is dangerous
– One stack frame for each list element
– Big list = stack overflow!

• So: favor tail recursion when inputs could be 
large (i.e., recursion could be deep). E.g., 
– Prefer List.fold_left to List.fold_right

• Library documentation should indicate tail recursion, or not
– Convert recursive functions to be tail recursive

CMSC 330 - Spring 2018



Tail Recursion Pattern (1 argument)

let func x =
let rec helper arg acc =
if (base case) then acc
else
let arg’ = (argument to recursive call)
let acc’ = (updated accumulator)
helper arg’ acc’ in (* end of helper fun *)

helper x (initial val of accumulator)
;;

CMSC 330 - Spring 2018



Tail Recursion Pattern with fact

let fact x =
let rec helper arg acc =
if arg = 0 then acc
else
let arg’ = arg – 1 in
let acc’ = acc * arg in
helper arg’ acc’ in (* end of helper fun *)

helper x 1
;;

CMSC 330 - Spring 2018



Tail Recursion Pattern with rev

let rev x =
let rec rev_helper arg acc =
match arg with [] -> acc
| h::t -> 
let arg’ = t in
let acc’ = h::acc in
rev_helper arg’ acc’ in (* end of helper fun *)

rev_helper x []
;;

CMSC 330 - Spring 2018

Can generalize to 
more than one 
argument, and 
multiple cases for 
each recursive call



Quiz #4

True/false: this is a tail-recursive map

CMSC 330 - Spring 2018

A. True
B. False

let map f l =
let rec helper l a =
match l with
[] -> a

| h::t -> helper t ((f h)::a)
in helper l []



Quiz #4

True/false: this is a tail-recursive map

CMSC 330 - Spring 2018

A. True
B.False (elements are reversed)

let map f l =
let rec helper l a =
match l with
[] -> a

| h::t -> helper t ((f h)::a)
in helper l []



A Tail Recursive map

CMSC 330 - Spring 2018

let map f l =
let rec helper l a =
match l with
[] -> a

| h::t -> helper t ((f h)::a)
in rev (helper l [])

Could instead change (f h)::a to be a@(f h)
Q: Why is the above implementation a better choice? 
A: O(n) running time, not O(n2) (where n is length of list) 



How far does this generalize?

• A function that is tail-recursive returns at most 
once (to its caller) when completely finished

• Is it possible to convert an arbitrary program into 
an equivalent one, except where no call ever 
returns?

• Yes. This is called continuation-passing style

CMSC 330 - Spring 2018


