CMSC 330: Organization of
Programming Languages

Operational Semantics

CMSC 330 Spring 2018

Formal Semantics of a Prog. Lang.

» Mathematical description of the meaning of
programs written in that language

* What a program computes, and what it does

» Three main approaches to formal semantics
* Denotational
e QOperational
* Axiomatic

CMSC 330 Spring 2018

Styles of Semantics

» Denotational semantics: translate programs into math!

* Usually: convert programs into functions mapping inputs to outputs
* Analogous to compilation

» Operational semantics: define how programs execute
* QOften on an abstract machine (mathematical model of computer)
* Analogous to interpretation

» Axiomatic semantics

* Describe programs as predicate transformers, i.e. for converting
initial assumptions into guaranteed properties after execution
» Preconditions: assumed properties of initial states
» Postcondition: guaranteed properties of final states

* Logical rules describe how to systematically build up these
transformers from programs

CMSC 330 Spring 2018 3

01)2%$!34(256$$7'5(89)3*8:$#5:8*9)<2

. =5$>)::$213>$13>$8*$3'5(89)3*8:$25:8%9)<2$;87%
@5$A5B)* S)<(&7<8;:
D E*A$ASF5:3'$8*$)*95('(595($B3($)9G$8:3*+915>87

. E"(38<16$425%4:52 93$A5B)*5$88A+:5*9

e=>V

D #8223k "#$%#&!'(&)(J

¥ e6BK'(522)3*)*$)<(3 T'8::
¥ v6F8:459189$(524:92$B(3:$5F8:488)*+$

I"HISY0ESH ()4 +$,&-. /

Definitional Interpreter

» It turns out that the rules for judgment e = v can

be easily turned into idiomatic OCaml code

* The language’s expressions e and values v have
corresponding OCaml datatype representations exp
and value

* The semantics is represented as a function

eval: exp -> value

» This way of presenting the semantics is referred
to as a definitional interpreter

* The interpreter defines the language’s meaning

CMSC 330 Spring 2018 5

Micro-OCaml Expression Grammar

e.=x|n|le+e|let x = e in e

»e, x, n are meta-variables that stand for

categories of syntax
* x Is any identifier (like z, y, £o00)
* nis any numeral (like 1, 0, 10, -25)
e eis any expression (here defined, recursively!)

»Concrete syntax of actual expressions in black
* Such as let, +, z, foo, in, ...

.= and | are meta-syntax used to define the syntax of a
Ianguage (part of “Backus-Naur form,” or BNF)

CMSC 330 Spring 2018 6

Micro-OCaml Expression Grammar

e.=x|n|le+e|let x = e in e

»Examples
* 1is a numeral n which is an expression e

 1+2z IS an expression e because
» 1 IS an expression e,
» z is an identifier x, which is an expression e, and
> e+ els an expression e
e letz=1 in 1l+z is an expression e because
» z is an identifier x,
» 1 IS an expression e,

» 1+2z is an expression e, and
» let x = e in elis an expression e

CMSC 330 Spring 2018

/012(342$#5*236$7$#2(8428(9

. :9(9:$2<9%+(3==3($>?2(3)1$@914()0)*+$)21$
3012(342$15*236$2(99$A/HDARB1E (8428(9

eFFeGhGe+e@@et x = e in e
42((91'7* @ 1R2$AXBO>Y*29((929(C$

type i1d = string

type num = int

type exp =

Ident of id

Num of num

Plus of exp * exp

Let of 1id * exp * exp

I"HISY0ESH ()4 +$,&-.

Values

» An expression’s final result is a value. What can
values be?

v..—n

» Just numerals for now

* In terms of an interpreter’s representation:
int

type wvalue

* In a full language, values v will also include booleans
(true, false), strings, functions, ...

CMSC 330 Spring 2018 10

Defining the Semantics

» Use rules to define judgmente = v

» These rules will allow us to show things like

e 143 =>4

» 1+3 is an expression e, and 4 is a value v
» This judgment claims that 1+3 evaluates to 4
» We use rules to prove it to be true

e let foo=1+2 in foo+5 = 8
e let £f=14+2 in let z=1 in f+z =4

CMSC 330 Spring 2018

11

Rules as English Text

» Suppose e is a numeral n No rule for x

e Then e evaluates to itself, i.e., n=> n

» Suppose e is an addition expression el + e2
* |f el evaluatesto ni,ie., el > nl
e |f e2 evaluatesto n2, i.e., e2 > n2
* Then e evaluates to n3, where n3 is the sum of n1 and n2
e le.,el+e2=>n3

» Suppose e is a let expression let x = el in e2
 |f el evaluatesto v, i.e., el > vi

e [fe2{vl/x} evaluatesto v2,i.e., e2{vl/x} > v2

» Here, e2{v1/x} means “the expression after substituting occurrences of x in
e2 with v1’

* Then e evaluates to v2, i.e., let x el in e2> v2

CMSC 330 Spring 2018 12

Rules of Inference

» We can use a more compact notation for the
rules we just presented: rules of inference

e Has the following format
Wing H, ... H

C

 Says: if the conditions H, ... H, (“hypotheses”) are
true, then the condition C (“conclusion”) is true

* If n=0 (no hypotheses) then the conclusion
automatically holds; this is called an axiom

» We will use inference rules to speak about
evaluation

CMSC 330 Spring 2018 13

Rules of Inference: Num and Sum

» Suppose e is a numeral n
e Then e evaluates to itself, i.e., n=> n

n=-n

» Suppose e is an addition expression el + e2
e |f el evaluatestonl,ie., el > nil
 |f e2 evaluatesto n2,i.e., e2 > n2
* Then e evaluates to n3, where n3 is the sum of n1 and n2
e le,el+e2=>n3

el >nl e2=>n2 n3iSsnl+n2
el + e2=>n3

CMSC 330 Spring 2018

14

Rules of Inference: Let

» Suppose e is a let expression let x = el in e2
* |felevaluatestov,ie., el> vl
e [fe2{vl/x} evaluatesto v2,i.e., e2{vl/x} > v2
* Then eevaluatesto v2,i.e.,let x = el in e2> v2

el > vl e2{vl/x} > v2

let x = el in e2 > v2

CMSC 330 Spring 2018

15

Derivations

» When we apply rules to an expression in
succession, we produce a derivation

e [t's a kind of tree, rooted at the conclusion

» Produce a derivation by goal-directed search
* Pick a rule that could prove the goal

* Then repeatedly apply rules on the corresponding
hypotheses

> Goal: Show that let x = 4 in x+3 = 7

CMSC 330 Spring 2018

16

Derivations

el > nl

e2>n2 n3isnl+n2

n=n

el > vl e2{vl/x} > v2

el + e2> n3

Goal: show that

let x = el In e2 > v2

let x=4in x+3 =

44 3=>3 7T7Iis4+3

4 = 4

4+3 = 7/

let x =4 In x+3 = 7

CMSC 330 Spring 2018

7

17

Quiz 1

What is derivation of the following judgment?

2 + (3 + 8) =13

(b)
3=>3 8=>8
3 +8 =11 2=>2

2 + (3 + 8) = 13

8=>8
3=>3
11 is 3+8

2 + (3 +8) > 13

CMSC 330 Spring 2018

18

Quiz 1

What is derivation of the following judgment?

2 + (3 + 8) =13

(b)
3=>3 8=>8
3 +8 =11 2=>2

2 + (3 + 8) = 13

(c)

8=>8
3=>3
11 is 3+8

2 + (3 +8) > 13

CMSC 330 Spring 2018

19

Trace of evaluation of
eval function

Definitional Interpreter corresponds to a

derivation by the rules

» The style of rules lends itself directly to the implementation of

an interpreter as a recursive fu

nction

let rec eval (e:exp) :value =

match e with
Ident x -> (* no rule ¥*)
failwith “no value”

| Num n -> n

| Plus (el,e2) ->
let nl = eval el in

n=n

el > nl e2=>n2 n3isnl+n2

let n2 = eval e2 in
let n3 = nl+n2 in
n3

| Let (x,el,e2) ->
let vl = eval el in

el + e2>n3

el > vl e2{vl/x}=>v2
let x

el in e2 > v2

let e2’ = subst vl x e2 in
let v2 = eval e2’ in v2

CMSC 330 Spring 2018

20

/0()123)4*5$6$7*30('(030($!288$9(005

41"4 31"3 7 %&+3
41" 4 4+3 1" 7
let x =4 In x+3 1" 7

25$3:0$52<0%$5:2'0$25$3:0$(0=>(5)10$=288%$3(00$4?$3;0$)*30('(030(E€

eval Num4!"$ eval Num3!"' 7 %&%+3
eval (subst 4 OxO
eval Num 4”3 Plus(ident (OxO), Num 3)) I"#"

eval Let(OxO, Num 4,Plus(ldent(OxO), Num 3)) " #"

I"HISY0ESH ()4 +$,&-.

Semantics Defines Program Meaning

» € => Vv holds if and only if a proofcan be built

* Proofs are derivations: axioms at the top, then rules
whose hypotheses have been proved to the bottom

* No proof meanse & v

» Proofs can be constructed bottom-up
* In a goal-directed fashion

» Thus, functionevale={v|e=>Vv}

* Determinism of semantics implies at most one
element for any e

» S0. Expression e means v

CMSC 330 Spring 2018 22

Environment-style Semantics

» The previous semantics uses substitution to
handle variables

* As we evaluate, we replace all occurrences of a
variable x with values it is bound to

» An alternative semantics, closer to a real
Implementation, is to use an environment

* As we evaluate, we maintain an explicit map from
variables to values, and look up variables as we see
them

CMSC 330 Spring 2018 23

Environments

» Mathematically, an environment is a partial function
from identifiers to values

* If Ais an environment, and x is an identifier, then A(x) can
either be ...

* ... avalue (intuition: the variable has been declared)
* ... orundefined (intuition: variable has not been declared)

» An environment can also be thought of as a table

e [fAIs Id Val
X 0
V4 2

* then A(x) is 0, A(y) is 2, and A(z) is undefined

CMSC 330 Spring 2018 24

Notation, Operations on Environments

» * Is the empty environment (undefined for all ids)
» x.v IS the environment that maps xto vand is
undefined for all other ids

» If A and A’ are environments then A, A’ is the
environment defined as follows

" Al(x) if A'(x) defined
(A, A)(x) = {A(x) if A(x)undefined but A(x) defined
. undefined otherwise

» S0: A’ shadows definitions in A
» For brevity, can write ¢, A as just A

CMSC 330 Spring 2018 25

Semantics with Environments

» The environment semantics changes the judgment
e->v
to be
Ales v
where A Iis an environment

* |dea: Ais used to give values to the identifiers in e
* A can be thought of as containing declarations made up to e

» Previous rules can be modified by

* Inserting A everywhere in the judgments
* Adding a rule to look up variables x in A
* Modifying the rule for 1let to add xto A

CMSC 330 Spring 2018 26

Environment-style Rules

&~ Lookup
Alx)=v variable x in
environment A
A x> v A:n=>n

A elsvl Ax:vl e2svz SnvironmentA
with mapping

A:let x = el in e2 > v2 from xto vi

Aiel>nl A e2=>n2 n3isnl+n2
A:el+e2=> n3

CMSC 330 Spring 2018 27

Quiz 2

What is a derivation of the following judgment?
e; let x=3 in x+2 = 5

’

(a)
x=>3 2=>2 5IS
3+2 (c)
——————————————————— x:2; x»3 x:2;2>2 5Iis 3+2
3=>3 x+2 =>5 | |=-—-———————e—mmeeee e
—————————————————————— °; let %x=3 in x+2 => 5
let x=3 1n x+2 = 5
(b) x:3; x=2>3 x:3;2=>2 5is 3+2
;3> 3 x:3;, x+2 => 5
°; let x=3 in x+2 => 5

CMSC 330 Spring 2018

28

"#3%&

'()*%H+90%, - #/)*#0 1 B2 %0*(-% 203304 504 *8

¥: let x=3

n x+2 ! 5

(a)
x!"3 2 1"25 is
3+2 (c)
------------------- x:2; x!3 x2 212 5is 3+2
31"3 xt2 15 || e
---------------------- . let x=3 in x+2 ! 5
[ef X=31n XtZ T 5
(b) X:3; xI"3 x3;, 2I"2 bH5is3+2
3 I"3 X:3; X+2 I 5
. let x=3 in x+2 ! 5

9::9%<<=%;>#15%&=?@

&A

"HS%$&S V() +%68&" -, "&" . */%0$,'%1"%&2

type env = (id * value) list

let extend env x v=(XV). env

let rec lookup env X =
match env with
[-> failwith Ono var O
1(yv): envO ->
If x =y thenv

else lookup env O x

3453*667*5-,$%8*97:; 67

Definitional Interpreter: Evaluation

let rec eval env e =

match e with
Ident x -> lookup env x

| Num n -> n

| Plus (el,e2) ->
let nl = eval env el in
let n2 = eval env e2 in
let n3 = nl+n2 in

n3
| Let (x,el,e2) ->
let vl = eval env el in
let env/ = extend env x vl in

let v2 = eval env’ e2 in v2

CMSC 330 Spring 2018

Adding Conditionals to Micro-OCam|

e = x|v|e + e|let x = e in e
|leq0 e |if e then eelse e

v.=n| true | false

* In terms of interpreter definitions:

type exp = type value =
Val of value Int of int
(* as before *) | Bool of bool
Eq0 of exp

| If of exp * exp * exp

CMSC 330 Spring 2018 32

Rules for EQO and Booleans

A:e=>0

A: true = true A; eq0 e > true

Aleov v¥#0

A, false > false A, eq0 e > false

» Booleans evaluate to themselves
e A: false > false

» eqO0 tests for 0
* A;eq0 0 = true
* A; eq0 3+4 > false

CMSC 330 Spring 2018

33

Rules for Conditionals

Aiel>true A e2>v

A;if el then e2 else e3 > v

A el > false A, e3>v

A;if el then e2else e3 > v

» Notice that only one branch is evaluated
* A;if eq0 0 then 3 else 4= 3
* A;if eq0 1 then 3 else 4=4

CMSC 330 Spring 2018

34

"#3%&

'()*%o#+%*(,%-,.#/)*#01%02%*(,%203 BI B398 %
9, if eq0 3-2 then 5 else 10!"10

l; 31"3 1; 21"2 3-2"#4

l; eq0 3-2 " false I; 101" 10
l; if eq0 3-2 then 5 else 10 " 10
(b)

33 21"2

3-2"#4

eq0 3-2!" false 101" 10

if eq0 3-2 then 5 else 101"10

I; 3I"3
I, 21"2
3-2"#4

l; eq0 3-2 | false I; 10 I"10

l; if eq0 3-2 then 5 else 10 ! 10

1 <:%&&=%<>.#15%7=@A

&B

"#3%&

'()*%#+%*(,%-,.#/)*#01%02%*(,%203 BV BLE88%

9 feqg03 -2then5else 10 1"10
() (c)
I, 3 1'"3 ;2 1"2 3 -2"#4 -3 1"3
------------------------ 1,2 1"2
l:eq0 3-2 1" false 10 1"10 3-2 "#4
. if eq0 3 -2 then 5 else 10 I" 10 - 3-2 11 1 "0
(b) I eq0 3 2 1 false I, 10 1"10
332 vr2] e
3-2"#4 I:ifeq0 3 - 2then 5 else 10 10
eq0 3 -2 1" false 10 1"10
if eqg03 -2 thenb5else 10 1"10

1 <:%&&=%<>.#15%7=@A

Updating the Interpreter

let rec eval env e
match e with
Ident x -> lookup env x
| Val v =-> v
| Plus (el,e2) ->

let Int nl = eval env el in
let Int n2 = eval env e2 in
let n3 = nl+n2 in
Int n3
| Let (x,el,e2) ->
let vl = eval env el in
let env’/’ = extend env x vl in
let v2 = 1 ’ 2 i 2 .
I Eq‘; e‘17 N evaL env. ec in v Basically both rules for
let Int n = eval env el in er in this one snlppet

if n=0 then Bool true else Bool false
| If (el,e2,e3) ->

let Bool b = eval env el in Both if rules here

if b then eval env e2
else eval env e3

CMSC 330 Spr

N
D
-
(e ¢}

37

=]

«

Quick Look: Type Checking

» Inference rules can also be used to specify a
program’s static semantics

* |.e., the rules for type checking

» We won’t cover this in depth in this course, but
here is a flavor.

» Types t::=bool | int
» Judgment - e: t says e has type ¢t

* We define inference rules for this judgment, just as
with the operational semantics

CMSC 330 Spring 2018 38

Some Type Checking Rules

» Boolean constants have type bool

- true : bool - false : bool

» Equality checking has type bool too
* Assuming its target expression has type int

F e:int

- eq0 e : bool
» Conditionals

Fel:bool Fe2:t Fe3: t

- i1f el then e2 else e3 . t

CMSC 330 Spring 2018

39

Handling Binding

» What about the types of variables?

* Taking inspiration from the environment-style
operational semantics, what could you do?

» Change judgment to be G + e : £ which says
e has type t under type environment G

* Gis a map from variables x to types t
» Analogous to map A, maps vars to types, not values

» What would be the rules for 1et, and variables?

CMSC 330 Spring 2018 40

Type Checking with Binding

» Variable lookup analogous to
G(x)=t A(x)=v
GrFx:t A x=>v
» Let binding

Grel:tl Gx:tlre2: t2
GFlet x = el in e2: t2

analogous to
Aielo>vl Ax:vl e2>v2

A:let x = el in e2 > v2

CMSC 330 Spring 2018

41

Scaling up

» Operational semantics (and similarly styled
typing rules) can handle full languages

* With records, recursive variant types, objects, first-
class functions, and more

» Provides a concise notation for explaining what
a language does. Clearly shows:
* Evaluation order
e Call-by-value vs. call-by-name
* Static scoping vs. dynamic scoping
* ... We may look at more of these later

CMSC 330 Spring 2018

42

