
Building Security In

CMSC 330 Spring 2018

1

Security breaches
• TJX (2007) - 94 million records*

• Adobe (2013) - 150 million records, 38 million users

• eBay (2014) - 145 million records

• Anthem (2014) - Records of 80 million customers

• Target (2013) - 110 million records

• Heartland (2008) - 160 million records

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

Just a few:

*containing SSNs, credit card nums, other private info

2

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

The 2017 Equifax Data Breach
• 148 million consumers’ personal information stolen

• They collect every details of your personal life
• Your SSN, Credit Card Numbers, Late Payments…

• You did not sign up for it

• You cannot ask them to stop collecting your data

• You have to pay to credit freeze/unfreeze

3

Defects and Vulnerabilities

2B LOC 50M LOC

……

• Many (if not all of) these breaches begin by
exploiting a vulnerability

• This is a security-relevant software defect (bug) or
design flaw that can be exploited to effect an
undesired behavior

• The use of software is growing
• So: more bugs and flaws
• Especially in places that are new to using software

4

“Internet of Things” (IOT)

5

Google Home

Amazon Alexa

https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-
todays-massive-internet-outage/

http://www.nytimes.com/2010/09/
26/world/middleeast/26iran.html

Stuxnet specifically
targets … processes
such as those used to
control … centrifuges
for separating nuclear
material. Exploiting four
zero-day flaws, Stuxnet
functions by targeting
machines using the
Microsoft Windows
operating system …,
then seeking out
Siemens Step7 software.

6

http://www.nytimes.com/2010/09/26/world/middleeast/26iran.html

http://www.wired.com/2015/07/ha
ckers-remotely-kill-jeep-highway/

The result of their work
was a hacking
technique—what the
security industry calls a
zero-day exploit—that can
target Jeep Cherokees
and give the attacker
wireless control, via the
Internet, to any of
thousands of vehicles.

7

http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

Driverless Cars

8

Considering Correctness

• All software is buggy, isn’t it? Haven’t we
been dealing with this for a long time?

• A normal user never sees most bugs, or
figures out how to work around them

• Therefore, companies fix the most likely
bugs, to save money

9

Considering Security
Key difference:

An attacker is not a normal user!

• The attacker will actively attempt to find defects,
using unusual interactions and features

• A typical interaction with a bug results in a crash
• An attacker will work to exploit the bug to do

much worse, to achieve his goals

10

Cyber-defense?

11

http://www.zdnet.com/article/firee
ye-kaspersky-hit-with-zero-day-

flaw-claims/

Security researcher Tavis
Ormandy disclosed the
existence of a vulnerability
which impacts on Kaspersky
[security] products.

Hermansen, [another
researcher,] publicly disclosed
a zero-day vulnerability within
cyberforensics firm FireEye's
security product, complete
with proof-of-concept code.

and bugs in security
products themselves!

14

http://www.zdnet.com/article/fireeye-kaspersky-hit-with-zero-day-flaw-claims/

The Internet, in one slide

Browser Web/FTP/etc.
server

Filesystem/D
atabase/etc.

Client Server

(Private)
Data

FS/DB is a separate entity,
logically (and often physically)

(Much) user data is
part of the browser

Need to protect this
state from illicit access

and tampering

21

Exploitable bugs
• Some bugs can be exploited

• An attacker can control how the program runs so that any
incorrect behavior serves the attacker

• Many kinds of exploits have been developed over
time, with technical names like

• Buffer overflow
• Use after free
• SQL injection
• Command injection
• Privilege escalation
• Cross-site scripting
• Path traversal
• …

22

What is a buffer overflow?
• A buffer overflow is a dangerous bug that affects

programs written in C and C++

• Normally, a program with this bug will simply crash

• But an attacker can alter the situations that cause
the program to do much worse
• Steal private information
• Corrupt valuable information
• Run code of the attacker’s choice

23

Buffer overflows from 10,000 ft
• Buffer =

• Block of memory associated with a variable

• Overflow =
• Put more into the buffer than it can hold

• Where does the overflowing data go?

Learn more in CMSC 414!
24

Data

Instructions

1. print “Password?” to the screen

2. read input into variable X

3. if X matches the password then log in

4. else print “Failed” to the screen

X = abc123

Password?
abc123
Failed

X

Normal interaction

25

Instructions

1. print “Password?” to the screen

2. read input into variable X

3. if X matches the password then log in

4. else print “Failed” to the screen

X = Overflow!!!!! 3.log in

Data

Password?
Overflow!!!!! 3.log in
Access granted

Exploitation

26

What happened?

27

strcpy(buff, “abc”);

• For C/C++ programs
• A buffer with the password could be

a local variable

• Therefore
• The input is too long, and overruns

the buffer
• The attacker’s input includes

machine instructions
• The overrun rewrites the return

address to point into the buffer, at
the machine instructions

• When the call “returns” it executes
the attacker’s code

Stopping the attack
• Buffer overflows rely on the ability to read or write

outside the bounds of a buffer

• C and C++ programs expect the programmer to
ensure this never happens

• But humans (regularly) make mistakes!

• Other languages (like Python, OCaml, Java, etc.)
ensure buffer sizes are respected

• The compiler inserts checks at reads/writes
• Such checks can halt the program
• But will prevent a bug from being exploited

28

Instructions

1. print “Password?” to the screen

2. read input into variable X

3. if X matches the password then log in

4. else print “Failed” to the screen

X = Overflow!!

Data

Password?
Overflow!!!!! 3.log in

Program halted

Preventing Exploitation

29

Key idea
• The key feature of the buffer overflow attack is the attacker

getting the application to treat attacker-provided data as
instructions (code) or code parameters

• This feature appears in many other exploits too
• SQL injection treats data as database queries
• Cross-site scripting treats data as browser commands
• Command injection treats data as operating system commands
• Etc.

• Sometimes the language helps (e.g., type safety)
• Sometimes the programmer needs to do more work

30

Attack Scenarios

31

Interception

Application Service provider

Client Remote service

CALL foo

<result>

• Calls to remote services could be intercepted by an adversary
• Snoop on inputs/outputs
• Corrupt inputs/outputs

• Avoid this possibility using cryptography (CMSC 414, CMSC 456)

32

Malicious clients

Application
Service provider

Client Remote service

CALL xfFHSd

• Server needs to protect itself against malicious clients
• Won’t run the software the server expects
• Will probe the limits of the interface

Exploit

33

Passing the buck

Application
Service provider

Client Remote service

CALL 7df0sdf

• Server needs to protect good clients from malicious clients that
will try to launch attacks via the server

• Corrupt the server state (e.g., uploading malicious files or code)
• Good client interaction affected as a result (e.g., getting the malware)

CALL foo

34

Defensive measures
• Two key actions the server can take:

• Validate that client inputs are well formed
• Fallacy: Focus on testing that good inputs produce

good behavior
• Must (also) ensure that malformed inputs result in

benign behavior

• Mitigate harm that might result by minimizing the
trusted computing base

• Isolate trusted components, or minimize privilege to
precisely what is needed, in case something goes
wrong

35

Quiz 1: What are reasonable assumptions?
Suppose you are writing a PDF viewer that is leaner
and better than Acrobat Reader. Which can you
assume?

A. PDF files given to your reader will always be well-
formed

B. PDF files will never exceed a particular size
C. You viewer will never be used as part of an

Internet-hosted service
D. None of the above

36

Quiz 1: What are reasonable assumptions?
Suppose you are writing a PDF viewer that is leaner
and better than Acrobat Reader. Which can you
assume?

A. PDF files given to your reader will always be well-
formed

B. PDF files will never exceed a particular size
C. You viewer will never be used as part of an

Internet-hosted service
D. None of the above

37

Validating inputs

38

What’s wrong with this Ruby code?

if ARGV.length < 1 then
puts "required argument: textfile path"
exit 1

end

call cat command on given argument
system(“cat ”+ARGV[0])

exit 0

catwrapper.rb:

39

> ls
catwrapper.rb
hello.txt
> ruby catwrapper.rb hello.txt
Hello world!
> ruby catwrapper.rb catwrapper.rb
if ARGV.length < 1 then

puts "required argument: textfile path”
…
> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!
> ls
catwrapper.rb

Possible Interaction

40

Quiz 2: What happened?
A. cat was given a file named

hello.txt; rm hello.txt
which doesn’t exist

B. system() interpreted the string
as having two commands, and
executed them both

C. cat was given three files –
hello.txt; and rm and
hello.txt – but halted when it
couldn’t find the second of
these

D. ARGV[0] contains hello.txt
(only), which was then catted

41

if ARGV.length < 1 then
puts "required argument: textfile path"
exit 1

end

call cat command on given argument
system(“cat ”+ARGV[0])

exit 0

catwrapper.rb:

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!
> ls
catwrapper.rb

Quiz 2: What happened?
A. cat was given a file named

hello.txt; rm hello.txt
which doesn’t exist

B. system() interpreted the string
as having two commands, and
executed them both

C. cat was given three files –
hello.txt; and rm and
hello.txt – but halted when it
couldn’t find the second of
these

D. ARGV[0] contains hello.txt
(only), which was then catted

42

if ARGV.length < 1 then
puts "required argument: textfile path"
exit 1

end

call cat command on given argument
system(“cat ”+ARGV[0])

exit 0

catwrapper.rb:

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!
> ls
catwrapper.rb

Possible deployment

Browser Web server

catwrapper.rb

Client Server

GET foo.txtfoo.txt

<output>

43

Consequences?
• If catwrapper.rb is part of a web service

• Input is untrusted — could be anything
• But we only want requestors to read (see) the contents

of the files, not to do anything else
• Current code is too powerful: vulnerable to

command injection
• How to fix it?

Need to validate inputs
https://www.owasp.org/index.php/Command_Injection

44

https://www.owasp.org/index.php/Command_Injection

Equifax: What happened
• Equifax used Struts which failed to properly vet input prior to using deserialization. Ruby

had a similar bug sometime back.

• Vulnerability was discovered in a popular open-source software package Apache
Struts, a programming framework for building web applications in Java

• The framework’s popular REST plugin is vulnerable. The REST plugin is used to handle
web requests, like data sent to a server from a form a user has filled out.

• The vulnerability relates to how Struts parses that kind of data and converts it into
information that can be interpreted by the Java programming language.

• When the vulnerability is successfully exploited, malicious code can be hidden inside of
such data, and executed when Struts attempts to convert it.

• Intruders can inject malware into web servers, without being detected, and use it to
steal or delete sensitive data, or infect computers with ransomware, among other things.

45

Input Validation
• We expect input of a certain form

• But we cannot guarantee it always has it
- it’s under the attacker’s control

• So we must validate it before we trust it

• Making input trustworthy
• Sanitize it by modifying it or using it in such a way that

the result is correctly formed by construction
• Check it has the expected form, and reject it if not

46

system("cat "+ARGV[0])

Checking: Blacklisting
• Reject strings with possibly bad chars: ’ --;

> ruby catwrapper.rb “hello.txt; rm hello.txt”
illegal argument

reject inputs
that have ; in
them

if ARGV[0] =~ /;/ then
puts "illegal argument"
exit 1

else
system("cat "+ARGV[0])

end

47

Sanitization: Blacklisting
• Delete the characters you don’t want: ’ --;

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!
cat: rm: No such file or directory
Hello world!
> ls hello.txt
hello.txt

delete
occurrences
of ; from input
string

system(“cat ”+ARGV[0]) system(“cat ”+ARGV[0].tr(“;”,“”))

48

Sanitization: Escaping
• Replace problematic characters with safe ones

• change ’ to \’
• change ; to \;
• change - to \-
• change \ to \\

• Which characters are problematic depends on the
interpreter the string will be handed to

• Web browser/server for URIs
- URI::escape(str,unsafe_chars)

• Program delegated to by web server
- CGI::escape(str)

49

Sanitization: Escaping

> ruby catwrapper.rb “hello.txt; rm hello.txt”
cat: hello.txt; rm hello.txt: No such file or directory
> ls hello.txt
hello.txt

escape
occurrences
of ‘, “”, ; etc.
in input string

system(“cat ”+ARGV[0])

def escape_chars(string)
pat = /(\'|\"|\.|*|\/|\-|\\|;|\||\s)/
string.gsub(pat){|match|"\\" + match}

end

system(“cat ”+escape_chars(ARGV[0]))

50

Quiz 3: Is this escaping sufficient?
A. No, you should also

escape character &
B. No, some of the escaped

characters are dangerous
even when escaped

C. Both of the above
D. Yes, it’s all good

51

def escape_chars(string)
pat = /(\'|\"|\.|*|\/|\-|\\|;|\||\s)/
string.gsub(pat){|match|"\\" + match}

end
system(“cat ”+escape_chars(ARGV[0]))

catwrapper.rb:

Quiz 3: Is this escaping sufficient?
A. No, you should also

escape character &
B. No, some of the escaped

characters are dangerous
even when escaped

C. Both of the above
D. Yes, it’s all good

52

def escape_chars(string)
pat = /(\'|\"|\.|*|\/|\-|\\|;|\||\s)/
string.gsub(pat){|match|"\\" + match}

end
system(“cat ”+escape_chars(ARGV[0]))

catwrapper.rb:

Escaping not always enough
> ls ../passwd.txt
passwd.txt
> ruby catwrapper.rb “../passwd.txt”
bob:apassword
alice:anotherpassword

• A web service probably only wants to give access
to the files in the current directory

• the .. sequence should have been disallowed

• Previous escaping doesn’t help because . is
replaced with \. which the shell interprets as .

53

Path traversal
This is called a path traversal vulnerability. Solutions:

• Delete all occurrences of the . character
• Will disallow legitimate files with dots in them

(hello.txt)

• Delete occurrences of .. sequences
• Safe, but disallows foo/../hello.txt where foo is a

subdirectory in the current working directory (CWD)

• Ideally: Allow any path that is within the CWD or one
of its subdirectories

https://www.owasp.org/index.php/Path_Traversal
54

https://www.owasp.org/index.php/Path_Traversal

Checking: Whitelisting
• Check that the user input is known to be safe

• E.g., only those files that exactly match a filename in
the current directory

• Rationale: Given an invalid input, safer to reject
than to fix

• “Fixes” may result in wrong output, or vulnerabilities
• Principle of fail-safe defaults

55

system("cat "+ARGV[0])

Checking: Whitelisting

> ruby catwrapper.rb “hello.txt; rm hello.txt”
illegal argument

files = Dir.entries(".").reject {|f| File.directory?(f) }

if not (files.member? ARGV[0]) then
puts "illegal argument"
exit 1

else
system("cat "+ARGV[0])

end

reject inputs that
do not mention a
legal file name

56

Validation Challenges
• Cannot always delete or sanitize problematic

characters
• You may want dangerous chars, e.g., “Peter

O’Connor”
• How do you know if/when the characters are bad?
• Hard to think of all of the possible characters to

eliminate

• Cannot always identify whitelist cheaply or
completely

• May be expensive to compute at runtime
• May be hard to describe (e.g., “all possible proper

names”)

57

Key Questions
• Which inputs in my program should not be trusted?

• These start from input from untrusted sources
• And these inputs influence (“taint”) other data that

flows through my program
- And could be stored in files, databases, etc.

• How to ensure that untrusted inputs, no matter what
they are, will produce benign results?

• Sanitization, checking, etc. as early as possible
- How to do this depends on the program, and how the inputs are

used

58

Quiz 4: As a developer, security is
A. Something I can help address by writing better code
B. Something that writing better code can do little to

address
C. Something that is the purview of the government,

e.g., DHS
D. Something that will never be solved so long as

market forces do not value security

(Pick an answer you think is best)

59

