Order Statistics
(aka Selection Problems)

Part II: Linear-Time Median Finding

Select(list, pos)

Previously we attempted to…

Place the n elements of the list into groups of 3 and find the median of those groups and create Med3List.

MoM3 = Select(Med3List, $n/6$);

Partition the original list around MoM3 into LeftList and RightList and figure out the position of MoM3.

if pos == MoM3pos then
 DONE!
elseif pos < MoM3pos then
 Select(LeftList, pos);
else
 Select(RightList, pos-MoM3pos)

…but this ran worst-case $O(n \log n)$ time.
Were we close?

We’ve seen via recurrence trees that eliminating some items as we go down level-by-level has some nice asymptotic advantages.

What if we could eliminate some more values before our recursion…

Select(list, pos)

Let’s try something a little different…

Place the n elements of the list into groups of 5 and find the median of those groups and create Med5List.

$\text{MoM5=Select(Med5List, n/10)}$;

Partition the original list around MoM5 into LeftList and RightList and figure out the position of MoM5.

if pos==MoM5pos then
 \text{DONE!}
elseif pos<MoM5pos then
 Select(LeftList, pos);
else
 Select(RightList, pos-MoM5pos)

…how will this run in the worst-case?
How bad is that last call?

After partitioning around the MoM5, in the worst case possible, how many elements are there in the sub-list that we are going to call Select() on recursively?

What’s The Worst Runtime?

Find the Med5s: $\Theta(n)$

Find the MoM5: $T(n/5)$

Partition around MoM5: $\Theta(n)$

Worst Case Recursion: $T(7n/10)$
It’s linear!

Next, let’s try to narrow-in on the constant coefficient…