Linear Time Sorting?
Sorting in Linear Time

We proved that when we are using a comparison-based model, the best we could do was $\Omega(n \log n)$ runtime in the worst case of an algorithm.

What if we change models?

– Might we have new restrictions (recall that our sorts so far work on any types of comparable data).
– Could we have certain types of data where the runtime is vastly improved?
Memory “Sort” on Unique Integers

Create arr[MAXINT] = {0}

For each value in the input,

 arr[value]=1;

Traverse arr from 1 to MAXINT and rebuild sorted list of values!

of comparisons to data?
amount of work done?
Counting Sort

Used with integers (or objects with integer keys).
Values do not need to be unique.

```plaintext
max=Max(arr);
min=Min(arr);
range=max-min+2;
count=new array[range];
temp=new array[n];
for i=1 to range
    count[i]=0;
for i=1 to n
    count[arr[i]-min+1]++;
for i=2 to range
    count[i]+=count[i-1];
for i=n to 1
    temp[count[arr[i]-min+1]] = arr[i];
count[arr[i]-min+1]--;
for i=1 to n
    arr[i]=temp[i];
```
Radix Sort

The ordering of the data must be such that if we perform a stable sort (if two values match, their relative order doesn’t change in the list) based on the individual positions of the data going “right to left” we will end up with the data correctly sorted.

ie: sort padded integers by column:

738	561	007	007
059	132	132	059
132	→007	→738	→132
007	738	059	561
561	059	561	738
Question (1)

If we have \(n \) b-bit integers, can we sort them in \(\Theta(b \cdot n) \) time?
Question (2)

How many bits are used to represent the numbers in the range 0…\(n-1\)?
Question (3)

What if we group the bits into clusters of size r?
Question (4)

Can we sort n values that are in the range $0..n^2$ in $O(n)$ time?
“When/How” Radix Sort

We have seen that certain approaches are really order $n \log n$ while others are really linear.

How do we know the “right” radix to use (what should we cluster together as a column)?

In a generic sense, we can show that the best radix sort for n values over a range of s is order $n \log s / \log n$.

So, in the case of n values over a range of n^n the radix sort would at best give us a runtime of n^2.
Bucket Sort

The sort runs in linear expected time.

We assume input that is uniformly distributed across the range of values.

Consider integers between 1 and 1000. Create n “buckets” of equal range size (eg: $1 \ldots \frac{1000}{n}$, $\frac{1000}{n} + 1 \ldots 2 \times \frac{1000}{n}$, …) If each bucket is ordered, then we can obtain an ordered full list by traversing the buckets in order.
Hash Tables and Buckets

As a side-note, there are hash table implementations where hash clashes are dealt with by creating buckets in positions of the table, rather than by looking for the next available open spot in the table.

On top of that, the data structure used for those buckets can get very clever (and can even change when a bucket exceeds a certain size).