Coloring a Graph
Graph Coloring

Given an undirected graph, can we assign a color to each vertex such that no adjacent vertices have the same color?

– If we have |V| colors, then yes.
– What if we have 2 colors? 3? k?

We actually did the 2-coloring problem as a homework problem. What was its runtime?

How much harder do you think deciding whether 3-coloring can be done will be?
Let’s consider the following algorithm for coloring a graph:
 – Number your vertices from 1 to $|V|$.
 – Assign color 1 to vertex 1.
 – for $i=2$ to $|V|$ {color vertex i with the lowest color number that has not been assigned to one of its neighbors}

See how many colors you used…
 – What is the runtime of this?
 – Is this guaranteed to be an optimal coloring of any given graph in terms of the number of colors used?
Coloring a Graph Differently

Let’s consider the following modified version of that algorithm which I will call \textit{GreedyAppxColor} for coloring a graph:

– Sort the vertices in descending order based on their degree and then number them from 1 to \(|V|\) where vertex 1 has the highest degree.

– Assign color 1 to vertex 1.

– for \(i=2\) to \(|V|\) \{color vertex \(i\) with the lowest color number that has not been assigned to one of its neighbors\}

• What is the runtime of this?
• Is \textit{this} guaranteed to be an optimal coloring of any given graph?
3-Color

The 3-coloring problem is NP-Complete!

We will soon discuss exactly what this means...
Sudoku as a Graph Problem

How could you convert a Sudoku game into a graph problem?

– What are the vertices?
– What are the edges?
Specific types of graphs...

There are proofs and conjectures about certain types of graphs and the ability to color them with various numbers of colors...

A valid proof closes the question.

A conjecture is really just a guess. It might be a reasonable-sounding guess made by a well-respected person, but it is still a guess…