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Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Path to a resource

Here, the file home.html is static content 
i.e.,  a fixed file returned by the server

http://facebook.com/delete.php

Here, the file home.html is dynamic content 
i.e., the server generates the content on the fly

?f=joe123&w=16

Arguments



Basic structure of web traffic

Browser Web server

Client Server

Database(Private) 
Data



Basic structure of web traffic

Browser Web server

Client Server



Basic structure of web traffic

Browser Web server

Client Server

HTTP



Basic structure of web traffic

Browser Web server

Client Server

• HyperText Transfer Protocol (HTTP) 
• An “application-layer” protocol for exchanging 

collections of data

HTTP
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Basic structure of web traffic

Browser Web server

Client Server

HTTP Request

User clicks

• Requests contain: 
• The URL of the resource the client wishes to obtain 
• Headers describing what the browser can do 

• Requests be GET or POST 
• GET: all data is in the URL itself (supposed to have no side-effects) 
• POST: includes the data as separate fields (can have side-effects)
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HTTP GET requests
http://www.reddit.com/r/security

User-Agent is typically a browser 
but it can be wget, JDK, etc.

http://www.reddit.com/r/security






Referrer URL: the site from which 
this request was issued.
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HTTP POST requests
Posting on Piazza

Explicitly includes data as a part of the request’s content

Implicitly includes data 
as a part of the URL



Basic structure of web traffic

Browser Web server

Client Server

HTTP Request

User clicks



Basic structure of web traffic

Browser Web server

Client Server

User clicks



Basic structure of web traffic

Browser Web server

Client Server

User clicks

HTTP Response



Basic structure of web traffic

Browser Web server

Client Server

User clicks

• Responses contain: 
• Status code 
• Headers describing what the server provides 
• Data 
• Cookies 

• State it would like the browser to store on the site’s behalf

HTTP Response
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HTTP is stateless
• The lifetime of an HTTP session is typically: 

• Client connects to the server 
• Client issues a request 
• Server responds 
• Client issues a request for something in the response 
• …. repeat …. 
• Client disconnects 

• HTTP has no means of noting “oh this is the same 
client from that previous session” 

• With this alone, you’d have to log in at every page load
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• Server processing results in intermediate state 

• Send the state to the client in hidden fields 

• Client returns the state in subsequent responses

Browser Web server

Client Server

HTTP Request
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Order

Pay

The total cost is $5.50. 
Confirm order?

Yes No

socks.comsocks.com

Separate page

http://socks.com
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Minimizing trust in the client

price = lookup(sid);
if(pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

The corresponding backend processing

We don’t want to pass hidden fields around all the time
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Statefulness with Cookies

• Server stores state, indexes it with a cookie 

• Send this cookie to the client 

• Client stores the cookie and returns it with 
subsequent queries to that same server

Browser Web server

Client Server

HTTP Request
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Cookie

Cookie

Server
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Why use cookies?
• Personalization 

• Let an anonymous user customize your site 
• Store font choice, etc., in the cookie
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Why use cookies?
• Tracking users 

• Advertisers want to know your behavior 
• Ideally build a profile across different websites 

- Read about iPad on CNN, then see ads on Amazon?! 
• How can an advertiser (A) know what you did on another site (S)?

S shows you an ad from A; A scrapes the referrer URL

Option 1: A maintains a DB, 
indexed by your IP address Problem: IP addrs change

Option 2: A maintains a DB  
indexed by a cookie

- “Third-party cookie”
- Commonly used by large  

ad networks (doubleclick)





Ad provided by 
an ad network
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I visit reddit.com

Later, I go to reddit.com/r/security

We are only sharing this cookie with  
*.adzerk.net; but we are telling them  

about where we just came from

http://reddit.com


Cookies and web authentication
• An extremely common use of cookies is to 

track users who have already authenticated 
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http://website.com/doStuff.html?sid=81asf98as8eak 

• The idea is for the server to be able to say “I am talking to 
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• If the user already visited 
http://website.com/login.html?user=alice&pass=secret 
with the correct password, then the server associates a 
“session cookie” with the logged-in user’s info 

• Subsequent requests (GET and POST) include the cookie 
in the request headers and/or as one of the fields: 
http://website.com/doStuff.html?sid=81asf98as8eak 

• The idea is for the server to be able to say “I am talking to 
the same browser that authenticated Alice earlier.”

Attacks?


