
WEB SECURITY:  
WEB BACKGROUND

CMSC 414
FEB 20 2018

A very basic web architecture

Browser Web server

Database

Client Server

(Private)
Data

DB is a separate entity,
logically (and often physically)

A very basic web architecture

Browser Web server

Database

Client Server

(Private)
Data

DB is a separate entity,
logically (and often physically)

(Much) user data is
part of the browser

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Protocol
ftp
https
tor

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Hostname/server
Translated to an IP address by DNS
(more on this later)

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Path to a resource

Here, the file home.html is static content
i.e., a fixed file returned by the server

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Path to a resource

Here, the file home.html is static content
i.e., a fixed file returned by the server

http://facebook.com/delete.php

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Path to a resource

Here, the file home.html is static content
i.e., a fixed file returned by the server

http://facebook.com/delete.php

Path to a resource
Here, the file home.html is dynamic content

i.e., the server generates the content on the fly

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Path to a resource

Here, the file home.html is static content
i.e., a fixed file returned by the server

http://facebook.com/delete.php

Here, the file home.html is dynamic content
i.e., the server generates the content on the fly

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Path to a resource

Here, the file home.html is static content
i.e., a fixed file returned by the server

http://facebook.com/delete.php

Here, the file home.html is dynamic content
i.e., the server generates the content on the fly

?f=joe123&w=16

Interacting with web servers

http://www.cs.umd.edu/~dml/home.html

Get and put resources which are identified by a URL

Path to a resource

Here, the file home.html is static content
i.e., a fixed file returned by the server

http://facebook.com/delete.php

Here, the file home.html is dynamic content
i.e., the server generates the content on the fly

?f=joe123&w=16

Arguments

Basic structure of web traffic

Browser Web server

Client Server

Database(Private)
Data

Basic structure of web traffic

Browser Web server

Client Server

Basic structure of web traffic

Browser Web server

Client Server

HTTP

Basic structure of web traffic

Browser Web server

Client Server

• HyperText Transfer Protocol (HTTP)
• An “application-layer” protocol for exchanging

collections of data

HTTP

Basic structure of web traffic

Browser Web server

Client Server

Basic structure of web traffic

Browser Web server

Client Server

User clicks

Basic structure of web traffic

Browser Web server

Client Server

HTTP Request

User clicks

Basic structure of web traffic

Browser Web server

Client Server

HTTP Request

User clicks

• Requests contain:
• The URL of the resource the client wishes to obtain
• Headers describing what the browser can do

• Requests be GET or POST
• GET: all data is in the URL itself (supposed to have no side-effects)
• POST: includes the data as separate fields (can have side-effects)

HTTP GET requests
http://www.reddit.com/r/security

http://www.reddit.com/r/security

HTTP GET requests
http://www.reddit.com/r/security

http://www.reddit.com/r/security

HTTP GET requests
http://www.reddit.com/r/security

User-Agent is typically a browser
but it can be wget, JDK, etc.

http://www.reddit.com/r/security

Referrer URL: the site from which 
this request was issued.

HTTP POST requests
Posting on Piazza

HTTP POST requests
Posting on Piazza

HTTP POST requests
Posting on Piazza

Implicitly includes data 
as a part of the URL

HTTP POST requests
Posting on Piazza

Explicitly includes data as a part of the request’s content

Implicitly includes data 
as a part of the URL

Basic structure of web traffic

Browser Web server

Client Server

HTTP Request

User clicks

Basic structure of web traffic

Browser Web server

Client Server

User clicks

Basic structure of web traffic

Browser Web server

Client Server

User clicks

HTTP Response

Basic structure of web traffic

Browser Web server

Client Server

User clicks

• Responses contain:
• Status code
• Headers describing what the server provides
• Data
• Cookies

• State it would like the browser to store on the site’s behalf

HTTP Response

<html> …… </html>

HTTP responses

<html> …… </html>

H
ea

de
rs

D
at

a
HTTP

version
Status
code

Reason
phrase

HTTP responses

HTTP is stateless
• The lifetime of an HTTP session is typically:

• Client connects to the server
• Client issues a request
• Server responds
• Client issues a request for something in the response
• …. repeat ….
• Client disconnects

• HTTP has no means of noting “oh this is the same
client from that previous session”

• With this alone, you’d have to log in at every page load

Maintaining state across HTTP sessions

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client Server

HTTP Request

Maintaining state across HTTP sessions

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client Server

HTTP Request

State

Maintaining state across HTTP sessions

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client Server

State

Maintaining state across HTTP sessions

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client Server

HTTP Response

State

Maintaining state across HTTP sessions

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client Server

HTTP Response

State

Maintaining state across HTTP sessions

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client Server

HTTP Response

State

Maintaining state across HTTP sessions

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client Server

State

Maintaining state across HTTP sessions

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client Server

HTTP Request

State

Maintaining state across HTTP sessions

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client Server

HTTP Request

State

Maintaining state across HTTP sessions

• Server processing results in intermediate state

• Send the state to the client in hidden fields

• Client returns the state in subsequent responses

Browser Web server

Client Server

HTTP Request

State

Online ordering
Order

$5.50

Order

socks.com

http://socks.com

Online ordering
Order

$5.50

Order

Pay

The total cost is $5.50. 
Confirm order?

Yes No

socks.comsocks.com

Separate page

http://socks.com

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

Online ordering
What’s presented to the user

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

Online ordering
What’s presented to the user

Online ordering

if(pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

The corresponding backend processing

Online ordering

if(pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

The corresponding backend processing

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

Online ordering
What’s presented to the user

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

Online ordering
What’s presented to the user

value=“0.01”

Minimizing trust in the client

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

What’s presented to the user

Minimizing trust in the client

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

<input type=“hidden” name=“sid” value=“781234”>

What’s presented to the user

Minimizing trust in the client

price = lookup(sid);
if(pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

The corresponding backend processing

Minimizing trust in the client

price = lookup(sid);
if(pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

The corresponding backend processing

We don’t want to pass hidden fields around all the time

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

HTTP Request

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

HTTP Request

State

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

HTTP Request

State

Cookie

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

State

Cookie

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

HTTP Response

State

Cookie

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

HTTP Response

Cookie State

Cookie

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

HTTP Response

Cookie State

Cookie

Cookie

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

HTTP Response

Cookie State

Cookie

Cookie

Server

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

State

Cookie

Cookie

Server

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

HTTP Request

State

Cookie

Cookie

Server

Statefulness with Cookies

• Server stores state, indexes it with a cookie

• Send this cookie to the client

• Client stores the cookie and returns it with
subsequent queries to that same server

Browser Web server

Client Server

HTTP Request

State

Cookie

Cookie

Server

Cookie

<html> …… </html>

H
ea

de
rs

D
at

a

Set-Cookie:key=value; options; ….
Cookies are key-value pairs

<html> …… </html>

H
ea

de
rs

D
at

a

Set-Cookie:key=value; options; ….
Cookies are key-value pairs

Cookies

Browser

Client

(Private)
Data

Semantics

Cookies

Browser

Client

(Private)
Data

• Store “us” under the key “edition” (think of
it like one big hash table)

Semantics

Cookies

Browser

Client

(Private)
Data

• Store “us” under the key “edition” (think of
it like one big hash table)

• This value is no good as of Wed Feb 18…

Semantics

Cookies

Browser

Client

(Private)
Data

• Store “us” under the key “edition” (think of
it like one big hash table)

• This value is no good as of Wed Feb 18…

• This value should only be readable by
any domain ending in .zdnet.com

Semantics

Cookies

Browser

Client

(Private)
Data

• Store “us” under the key “edition” (think of
it like one big hash table)

• This value is no good as of Wed Feb 18…

• This value should only be readable by
any domain ending in .zdnet.com

• This should be available to any resource
within a subdirectory of /

Semantics

Cookies

Browser

Client

(Private)
Data

• Store “us” under the key “edition” (think of
it like one big hash table)

• This value is no good as of Wed Feb 18…

• This value should only be readable by
any domain ending in .zdnet.com

• This should be available to any resource
within a subdirectory of /

• Send the cookie to any future requests to
<domain>/<path>

Semantics

Cookies

Browser

Client

(Private)
Data

• Store “us” under the key “edition” (think of
it like one big hash table)

• This value is no good as of Wed Feb 18…

• This value should only be readable by
any domain ending in .zdnet.com

• This should be available to any resource
within a subdirectory of /

• Send the cookie to any future requests to
<domain>/<path>

Semantics

Requests with cookies

Subsequent visit

…

Requests with cookies

Subsequent visit

…

R
es

po
ns

e

Requests with cookies

Subsequent visit

…

R
es

po
ns

e

Why use cookies?
• Personalization

• Let an anonymous user customize your site
• Store font choice, etc., in the cookie

Why use cookies?
• Tracking users

• Advertisers want to know your behavior
• Ideally build a profile across different websites

- Read about iPad on CNN, then see ads on Amazon?!
• How can an advertiser (A) know what you did on another site (S)?

Why use cookies?
• Tracking users

• Advertisers want to know your behavior
• Ideally build a profile across different websites

- Read about iPad on CNN, then see ads on Amazon?!
• How can an advertiser (A) know what you did on another site (S)?

S shows you an ad from A; A scrapes the referrer URL

Why use cookies?
• Tracking users

• Advertisers want to know your behavior
• Ideally build a profile across different websites

- Read about iPad on CNN, then see ads on Amazon?!
• How can an advertiser (A) know what you did on another site (S)?

S shows you an ad from A; A scrapes the referrer URL

Option 1: A maintains a DB,
indexed by your IP address Problem: IP addrs change

Why use cookies?
• Tracking users

• Advertisers want to know your behavior
• Ideally build a profile across different websites

- Read about iPad on CNN, then see ads on Amazon?!
• How can an advertiser (A) know what you did on another site (S)?

S shows you an ad from A; A scrapes the referrer URL

Option 1: A maintains a DB,
indexed by your IP address Problem: IP addrs change

Option 2: A maintains a DB  
indexed by a cookie

- “Third-party cookie”
- Commonly used by large  

ad networks (doubleclick)

Ad provided by 
an ad network

Snippet of reddit.com source

http://reddit.com

Snippet of reddit.com source

Our first time accessing adzerk.net

http://reddit.com

I visit reddit.com

http://reddit.com

I visit reddit.com

http://reddit.com

I visit reddit.com

http://reddit.com

I visit reddit.com

Later, I go to reddit.com/r/security

http://reddit.com

I visit reddit.com

Later, I go to reddit.com/r/security

http://reddit.com

I visit reddit.com

Later, I go to reddit.com/r/security

http://reddit.com

I visit reddit.com

Later, I go to reddit.com/r/security

We are only sharing this cookie with  
*.adzerk.net; but we are telling them  

about where we just came from

http://reddit.com

Cookies and web authentication
• An extremely common use of cookies is to 

track users who have already authenticated

• If the user already visited 
http://website.com/login.html?user=alice&pass=secret 
with the correct password, then the server associates a
“session cookie” with the logged-in user’s info

• Subsequent requests (GET and POST) include the cookie
in the request headers and/or as one of the fields: 
http://website.com/doStuff.html?sid=81asf98as8eak

• The idea is for the server to be able to say “I am talking to
the same browser that authenticated Alice earlier.”

Cookies and web authentication
• An extremely common use of cookies is to 

track users who have already authenticated

• If the user already visited 
http://website.com/login.html?user=alice&pass=secret 
with the correct password, then the server associates a
“session cookie” with the logged-in user’s info

• Subsequent requests (GET and POST) include the cookie
in the request headers and/or as one of the fields: 
http://website.com/doStuff.html?sid=81asf98as8eak

• The idea is for the server to be able to say “I am talking to
the same browser that authenticated Alice earlier.”

Attacks?

