
Principles for secure
design

Some of the slides and content are from Mike Hicks’ Coursera course

Making secure software
• Flawed approach: Design and build software, and

ignore security at first
• Add security once the functional requirements are

satisfied

• Better approach: Build security in from the start
• Incorporate security-minded thinking into all phases of

the development process

Development process

• Requirements
• Design
• Implementation
• Testing/assurance

Security Requirements
Abuse Cases

Code Review (with tools)

Penetration Testing

Security-oriented Design

Risk-based Security Tests

Architectural Risk Analysis

Four common phases of development

Security activities apply to all phases

Development process

• Requirements
• Design
• Implementation
• Testing/assurance

Security Requirements
Abuse Cases

Code Review (with tools)

Penetration Testing

Security-oriented Design

Risk-based Security Tests

Architectural Risk Analysis

Four common phases of development

Security activities apply to all phases

We’ve been talking 
about these

Development process

• Requirements
• Design
• Implementation
• Testing/assurance

Security Requirements
Abuse Cases

Code Review (with tools)

Penetration Testing

Security-oriented Design

Risk-based Security Tests

Architectural Risk Analysis

Four common phases of development

Security activities apply to all phases

We’ve been talking 
about these

This class is 
about these

Designing secure systems
• Model your threats

• Define your security requirements
• What distinguishes a security requirement from a

typical “software feature”?

• Apply good security design principles

Threat Modeling

Threat Model
• The threat model makes explicit the adversary’s

assumed powers
• Consequence: The threat model must match reality,

otherwise the risk analysis of the system will be wrong

• The threat model is critically important
• If you are not explicit about what the attacker can do,

how can you assess whether your design will repel that
attacker?

Threat Model
• The threat model makes explicit the adversary’s

assumed powers
• Consequence: The threat model must match reality,

otherwise the risk analysis of the system will be wrong

• The threat model is critically important
• If you are not explicit about what the attacker can do,

how can you assess whether your design will repel that
attacker?

“This system is secure” means nothing
in the absence of a threat model

A few different network threat models

Malicious user

Client

Server

Network

A few different network threat models

Malicious user Snooping

Client

Server

Network

A few different network threat models

Malicious user Snooping

Client

Server

Network

Co-located user

A few different network threat models

Malicious user Snooping Compromised server

Client

Server

Network

Co-located user

Threat-driven Design
• Different threat models will elicit different responses

• Only malicious users: implies message traffic is safe
• No need to encrypt communications
• This is what telnet remote login software assumed

• Snooping attackers: means message traffic is visible
• So use encrypted wifi (link layer), encrypted network layer

(IPsec), or encrypted application layer (SSL)
- Which is most appropriate for your system?

• Co-located attacker: can access local files, memory
• Cannot store unencrypted secrets, like passwords
• Likewise with a compromised server

More on these 
when we get 
to networking

In fact, even 
encrypting them 
might not suffice!

(More later)

Threat-driven Design
• Different threat models will elicit different responses

• Only malicious users: implies message traffic is safe
• No need to encrypt communications
• This is what telnet remote login software assumed

• Snooping attackers: means message traffic is visible
• So use encrypted wifi (link layer), encrypted network layer

(IPsec), or encrypted application layer (SSL)
- Which is most appropriate for your system?

• Co-located attacker: can access local files, memory
• Cannot store unencrypted secrets, like passwords
• Likewise with a compromised server

More on these 
when we get 
to networking

In fact, even 
encrypting them 
might not suffice!

(More later)

Bad Model = Bad Security
• Any assumptions you make in your model are

potential holes that the adversary can exploit

Bad Model = Bad Security
• Any assumptions you make in your model are

potential holes that the adversary can exploit

• E.g.: Assuming no snooping users no longer valid
• Prevalence of wi-fi networks in most deployments

Bad Model = Bad Security
• Any assumptions you make in your model are

potential holes that the adversary can exploit

• E.g.: Assuming no snooping users no longer valid
• Prevalence of wi-fi networks in most deployments

• Other mistaken assumptions
• Assumption: Encrypted traffic carries no information

Bad Model = Bad Security
• Any assumptions you make in your model are

potential holes that the adversary can exploit

• E.g.: Assuming no snooping users no longer valid
• Prevalence of wi-fi networks in most deployments

• Other mistaken assumptions
• Assumption: Encrypted traffic carries no information

- Not true! By analyzing the size and distribution of messages, you
can infer application state

• Assumption: Timing channels carry little information
- Not true! Timing measurements of previous RSA implementations

could be used eventually reveal a remote SSL secret key

Bad Model = Bad Security
Skype encrypts its packets, so we’re not revealing anything, right?

Assumption: Encrypted traffic carries no information

But Skype varies its packet sizes…

Bad Model = Bad Security
Skype encrypts its packets, so we’re not revealing anything, right?

Assumption: Encrypted traffic carries no information

But Skype varies its packet sizes…

…and different languages have different  
word/unigram lengths…

Bad Model = Bad Security
Skype encrypts its packets, so we’re not revealing anything, right?

Assumption: Encrypted traffic carries no information

But Skype varies its packet sizes…

…and different languages have different  
word/unigram lengths…

…so you can infer what language two 
people are speaking based on packet sizes!

Finding a good model
• Compare against similar systems

• What attacks does their design contend with?

• Understand past attacks and attack patterns
• How do they apply to your system?

• Challenge assumptions in your design
• What happens if an assumption is untrue?

- What would a breach potentially cost you?
• How hard would it be to get rid of an assumption,

allowing for a stronger adversary?
- What would that development cost?

Security Requirements

You have your threat model.

Now let’s define what we need to defend against.

Security Requirements
• Software requirements typically about what the

software should do

• We also want to have security requirements
• Security-related goals (or policies)

- Example: One user’s bank account balance should not be learned
by, or modified by, another user, unless authorized

• Required mechanisms for enforcing them
- Example:

1.Users identify themselves using passwords,
2.Passwords must be “strong,” and
3.The password database is only accessible to login program.

Typical Kinds of Requirements
• Policies

• Confidentiality (and Privacy and Anonymity)
• Integrity
• Availability

• Supporting mechanisms
• Authentication
• Authorization
• Audit-ability
• Encryption

Supporting mechanisms
These relate identities (“principals”) to actions

Authentication Authorization Audit-ability

Supporting mechanisms
These relate identities (“principals”) to actions

Authentication Authorization Audit-ability
How can a system 
tell who a user is

Supporting mechanisms
These relate identities (“principals”) to actions

Authentication Authorization Audit-ability
How can a system 
tell who a user is

What we know
What we have 
What we are

>1 of the above =  
 Multi-factor authentication

Supporting mechanisms
These relate identities (“principals”) to actions

Authentication Authorization Audit-ability
How can a system 
tell who a user is

How can a system 
tell what a user is 

allowed to do

What we know
What we have 
What we are

>1 of the above =  
 Multi-factor authentication

Supporting mechanisms
These relate identities (“principals”) to actions

Authentication Authorization Audit-ability
How can a system 
tell who a user is

How can a system 
tell what a user is 

allowed to do

What we know
What we have 
What we are

>1 of the above =  
 Multi-factor authentication

Access control policies
(defines) 

+
Mediator
(checks)

Supporting mechanisms
These relate identities (“principals”) to actions

Authentication Authorization Audit-ability
How can a system 
tell who a user is

How can a system 
tell what a user is 

allowed to do

How can a system 
tell what a user did

What we know
What we have 
What we are

>1 of the above =  
 Multi-factor authentication

Access control policies
(defines) 

+
Mediator
(checks)

Supporting mechanisms
These relate identities (“principals”) to actions

Authentication Authorization Audit-ability
How can a system 
tell who a user is

How can a system 
tell what a user is 

allowed to do

How can a system 
tell what a user did

What we know
What we have 
What we are

>1 of the above =  
 Multi-factor authentication

Access control policies
(defines) 

+
Mediator
(checks)

Retain enough info 
to determine the

circumstances of a  
breach

Defining Security Requirements
• Many processes for deciding security requirements

• Example: General policy concerns
• Due to regulations/standards (HIPAA, SOX, etc.)
• Due organizational values (e.g., valuing privacy)

• Example: Policy arising from threat modeling
• Which attacks cause the greatest concern?

- Who are the likely adversaries and what are their goals and
methods?

• Which attacks have already occurred?
- Within the organization, or elsewhere on related systems?

Abuse Cases
• Abuse cases illustrate security requirements

• Where use cases describe what a system should
do, abuse cases describe what it should not do

• Example use case: The system allows bank
managers to modify an account’s interest rate

• Example abuse case: A user is able to spoof being
a manager and thereby change the interest rate on
an account

Defining Abuse Cases
• Construct cases in which an adversary’s exercise of

power could violate a security requirement
• Based on the threat model
• What might occur if a security measure was removed?

• Example: Co-located attacker steals password file and
learns all user passwords

• Possible if password file is not encrypted
• Example: Snooping attacker replays a captured message,

effecting a bank withdrawal
• Possible if messages are have no nonce (a small amount of

uniqueness/randomness - like the time of day or sequence
number)

Security design
principles

Design Defects = Flaws
• Recall that software defects consist of both flaws

and bugs
• Flaws are problems in the design
• Bugs are problems in the implementation

• We avoid flaws during the design phase

• According to Gary McGraw,
50% of security problems are flaws

• So this phase is very important

Categories of Principles

Categories of Principles
• Prevention

• Goal: Eliminate software defects entirely
• Example: Heartbleed bug would have been prevented by

using a type-safe language, like Java

Categories of Principles
• Prevention

• Goal: Eliminate software defects entirely
• Example: Heartbleed bug would have been prevented by

using a type-safe language, like Java

• Mitigation
• Goal: Reduce the harm from exploitation of unknown defects

Categories of Principles
• Prevention

• Goal: Eliminate software defects entirely
• Example: Heartbleed bug would have been prevented by

using a type-safe language, like Java

• Mitigation
• Goal: Reduce the harm from exploitation of unknown defects
• Example: Run each browser tab in a separate process, so

exploitation of one tab does not yield access to data in another

• Detection (and Recovery)
• Goal: Identify and understand an attack (and undo damage)
• Example: Monitoring (e.g., expected invariants), snapshotting

Principles for building secure systems

• Security is economics
• Principle of least privilege
• Use fail-safe defaults
• Use separation of responsibility
• Defend in depth
• Account for human factors
• Ensure complete mediation
• Kerkhoff’s principle

• Accept that threat models change
• If you can’t prevent, detect
• Design security from the ground up
• Prefer conservative designs
• Proactively study attacks

General rules of thumb that, 
when neglected, result in design flaws

“Security is economics”

• In practice, need to resist a certain level of attack
• Example: Safes come with security level ratings
• “Safe against safecracking tools & 30 min time limit”

• Corollary: Focus energy & time on weakest link

• Corollary: Attackers follow the path of least
resistance

THERE ARE NO SECURE SYSTEMS, ONLY DEGREES OF INSECURITY

You can’t afford to secure against everything, so what do you defend against? 
Answer: That which has the greatest “return on investment”

“Principle of least privilege”

• This doesn’t necessarily reduce probability of failure
• Reduces the EXPECTED COST

• Example: Unix does a BAD JOB:
• Every program gets all the privileges of the user who invoked it
• vim as root: it can do anything -- should just get access to file

• Example: Windows JUST AS BAD, MAYBE WORSE
• Many users run as Administrator,
• Many tools require running as Administrator

Give a program the access it legitimately needs to do its job. NOTHING MORE

“Use fail-safe defaults”

• Default-deny policies
• Start by denying all access
• Then allow only that which has been explicitly permitted

• Crash => fail to secure behavior
• Example: firewalls explicitly decide to forward
• Failure => packets don’t get through

Things are going to break. Break safely.

“Use separation of responsibility”

• Example: US government
• Checks and balances among different branches

• Example: Movie theater
• One employee sells tickets, another tears them
• Tickets go into lockbox

• Example: Nuclear weapons…

Split up privilege so no one person or program has total power.

Use separation of responsibility

“Defend in depth”

• Only in the event that all of them have been breached
should security be endangered.

• Example: Multi-factor authentication:
• Some combination of password, image selection, USB

dongle, fingerprint, iris scanner,… (more on these later)

• Example: “You can recognize a security guru who is
particularly cautious if you see someone wearing both….”

Use multiple, redundant protections

…a belt and suspenders

Defense in depth

…a belt and suspenders

“Ensure complete mediation”

• Any access control system has some resource it needs
to enforce

• Who is allowed to access a files
• Who is allowed to post to a message board…

• Reference Monitor: The piece of code that checks for
permission to access a resource

Make sure your reference monitor sees every access to every object

Ensure complete mediation

“Account for human factors”

• The security of your system ultimately lies in the hands of
those who use it.

• If they don’t believe in the system or the cost it takes to
secure it, then they won’t do it.

• Example: “All passwords must have 15 characters, 3
numbers, 6 hieroglyphics, …”

(1) “Psychological acceptability”:  
Users must buy into the security model

Account for human factors (“psychological acceptability”) 
(1) Users must buy into the security

“Account for human factors”

• The security of your system ultimately lies in the hands of
those who use it.

• If it is too hard to act in a secure fashion, then they won’t
do it.

• Example: Popup dialogs

(2) The security system must be usable

Account for human factors
(2) The security system must be usable

Account for human factors
(2) The security system must be usable

Account for human factors
(2) The security system must be usable

Account for human factors
(2) The security system must be usable

“Account for human factors”

• The security of your system ultimately lies in the hands of
those who use it.

• If it is too hard to act in a secure fashion, then they won’t
do it.

• Example: Popup dialogs

(2) The security system must be usable

“Kerkhoff’s principle”

• Originally defined in the context of crypto systems
(encryption, decryption, digital signatures, etc.):

• Crypto systems should remain secure even when an
attacker knows all of the internal details

• It is easier to change a compromised key than to update all
code and algorithms

• The best security is the light of day

Don’t rely on security through obscurity

Kerkhoff’s principle??

Kerkhoff’s principle!

Principles for building secure systems

• Security is economics
• Principle of least privilege
• Use fail-safe defaults
• Use separation of responsibility
• Defend in depth
• Account for human factors
• Ensure complete mediation
• Kerkhoff’s principle

• Accept that threat models change;
adapt your designs over time

• If you can’t prevent, detect
• Design security from the ground up
• Prefer conservative designs
• Proactively study attacks

Self-explanatory:Know these well:

SANDBOXES
Execution environment that restricts what 

an application running in it can do

NaCl’s
restrictions

Chromium’s
restrictions

Takes arbitrary x86, runs it in a sandbox in a browser
Restrict applications to using a narrow API

Data integrity: No reads/writes outside of sandbox

No unsafe instructions

CFI

Runs each webpage’s rendering engine in a sandbox
Restrict rendering engines to a narrow “kernel” API

Data integrity: No reads/writes outside of sandbox  
(incl. the desktop and clipboard)

ISOLATION What have I done  
to deserve this?

Sandbox mental model

Untrusted  
code & data

Trusted  
code & data

Narrow  
interface

Sandbox

• Even the untrusted code
needs input and output

• The goal of the sandbox is to
constrain what the untrusted
program can execute, what
data it can access, what
system calls it can make, etc.

Can access data
Can make syscalls

All data and  
syscalls must  

be accessed via  
the narrow i/f

Example sandboxing mechanism: SecComp

• Linux system call enabled since 2.6.12 (2005)
• Affected process can subsequently only perform
read, write, exit, and sigreturn system calls

- No support for open call: Can only use already-open file descriptors
• Isolates a process by limiting possible interactions

• Follow-on work produced seccomp-bpf
• Limit process to policy-specific set of system calls,

subject to a policy handled by the kernel
- Policy akin to Berkeley Packet Filters (BPF)

• Used by Chrome, OpenSSH, vsftpd, and others

Idea: Isolate Flash Player

Idea: Isolate Flash Player
• Receive .swf code, save it

.swf
code

Idea: Isolate Flash Player
• Call fork to create a new process
• Receive .swf code, save it

.swf
code

Idea: Isolate Flash Player
• Call fork to create a new process
• In the new process, open the file

• Receive .swf code, save it

.swf
code

open

Idea: Isolate Flash Player
• Call fork to create a new process
• In the new process, open the file
• Call exec to run Flash player

• Receive .swf code, save it

.swf
code

open

Idea: Isolate Flash Player
• Call fork to create a new process
• In the new process, open the file
• Call exec to run Flash player

• Receive .swf code, save it

.swf
code

open

• Call seccomp-bpf to compartmentalize

Sandboxing as a design principle

Untrusted  
code & data

Trusted  
code & data

Narrow  
interface

Sandbox • It’s not just 3rd-party code that
should be sandboxed: sandbox your
own code, too!

• Break up your program into
modules that separate
responsibilities (what you should
be doing anyway)

• Give each module the least
privileges it needs to do its job

• Use the sandbox to enforce what
exactly a given module can/can’t do

3rd party binaries (NaCl)
Webpages (Chromium)
Modules of your own code:
Mitigate the impact of the inevitability 
that your code has an exploitable bug

Case study: VSFTPD

Very Secure FTPD
• FTP: File Transfer Protocol

- More popular before the rise of HTTP, but still in use
- 90’s and 00’s: FTP daemon compromises were frequent and

costly, e.g., in Wu-FTPD, ProFTPd, …

• Very thoughtful design aimed to prevent and
mitigate security defects

• But also to achieve good performance
- Written in C

• Written and maintained by Chris Evans since 2002
- No security breaches that I know of

https://security.appspot.com/vsftpd.html

https://security.appspot.com/vsftpd.html

VSFTPD Threat model
• Clients untrusted, until authenticated

• Once authenticated, limited trust:
- According to user’s file access control policy
- For the files being served FTP (and not others)

• Possible attack goals
- Steal or corrupt resources (e.g., files, malware)
- Remote code injection

• Circumstances:
- Client attacks server
- Client attacks another client

Defense: Secure Strings
struct mystr
{
 char* PRIVATE_HANDS_OFF_p_buf;
 unsigned int PRIVATE_HANDS_OFF_len;
 unsigned int PRIVATE_HANDS_OFF_alloc_bytes;
};

Defense: Secure Strings
struct mystr
{
 char* PRIVATE_HANDS_OFF_p_buf;
 unsigned int PRIVATE_HANDS_OFF_len;
 unsigned int PRIVATE_HANDS_OFF_alloc_bytes;
};

Normal (zero-terminated) C string

char* PRIVATE_HANDS_OFF_p_buf;

Defense: Secure Strings
struct mystr
{
 char* PRIVATE_HANDS_OFF_p_buf;
 unsigned int PRIVATE_HANDS_OFF_len;
 unsigned int PRIVATE_HANDS_OFF_alloc_bytes;
};

Normal (zero-terminated) C string
The actual length (i.e., strlen(PRIVATE_HANDS_OFF_p_buf))

unsigned int PRIVATE_HANDS_OFF_len;

Defense: Secure Strings
struct mystr
{
 char* PRIVATE_HANDS_OFF_p_buf;
 unsigned int PRIVATE_HANDS_OFF_len;
 unsigned int PRIVATE_HANDS_OFF_alloc_bytes;
};

Normal (zero-terminated) C string
The actual length (i.e., strlen(PRIVATE_HANDS_OFF_p_buf))

Size of buffer returned by malloc

unsigned int PRIVATE_HANDS_OFF_alloc_bytes;

Defense: Secure Strings
struct mystr
{
 char* PRIVATE_HANDS_OFF_p_buf;
 unsigned int PRIVATE_HANDS_OFF_len;
 unsigned int PRIVATE_HANDS_OFF_alloc_bytes;
};

Normal (zero-terminated) C string
The actual length (i.e., strlen(PRIVATE_HANDS_OFF_p_buf))

Size of buffer returned by malloc

void
private_str_alloc_memchunk(struct mystr* p_str, const char* p_src,
 unsigned int len)
{
 …
}

void
str_copy(struct mystr* p_dest, const struct mystr* p_src)
{
 private_str_alloc_memchunk(p_dest, p_src->p_buf, p_src->len);
}

struct mystr
{
 char* p_buf;
 unsigned int len;
 unsigned int alloc_bytes;
};

replace uses of char* with struct mystr*
and uses of strcpy with str_copy

void
private_str_alloc_memchunk(struct mystr* p_str, const char* p_src,
 unsigned int len)
{
 /* Make sure this will fit in the buffer */
 unsigned int buf_needed;
 if (len + 1 < len)
 {
 bug("integer overflow");
 }
 buf_needed = len + 1;
 if (buf_needed > p_str->alloc_bytes)
 {
 str_free(p_str);
 s_setbuf(p_str, vsf_sysutil_malloc(buf_needed));
 p_str->alloc_bytes = buf_needed;
 }
 vsf_sysutil_memcpy(p_str->p_buf, p_src, len);
 p_str->p_buf[len] = '\0';
 p_str->len = len;
}

struct mystr
{
 char* p_buf;
 unsigned int len;
 unsigned int alloc_bytes;
};

Copy in at most len
bytes from p_src

into p_str

void
private_str_alloc_memchunk(struct mystr* p_str, const char* p_src,
 unsigned int len)
{
 /* Make sure this will fit in the buffer */
 unsigned int buf_needed;
 if (len + 1 < len)
 {
 bug("integer overflow");
 }
 buf_needed = len + 1;
 if (buf_needed > p_str->alloc_bytes)
 {
 str_free(p_str);
 s_setbuf(p_str, vsf_sysutil_malloc(buf_needed));
 p_str->alloc_bytes = buf_needed;
 }
 vsf_sysutil_memcpy(p_str->p_buf, p_src, len);
 p_str->p_buf[len] = '\0';
 p_str->len = len;
}

struct mystr
{
 char* p_buf;
 unsigned int len;
 unsigned int alloc_bytes;
};

consider NUL
terminator when

computing space

Copy in at most len
bytes from p_src

into p_str

void
private_str_alloc_memchunk(struct mystr* p_str, const char* p_src,
 unsigned int len)
{
 /* Make sure this will fit in the buffer */
 unsigned int buf_needed;
 if (len + 1 < len)
 {
 bug("integer overflow");
 }
 buf_needed = len + 1;
 if (buf_needed > p_str->alloc_bytes)
 {
 str_free(p_str);
 s_setbuf(p_str, vsf_sysutil_malloc(buf_needed));
 p_str->alloc_bytes = buf_needed;
 }
 vsf_sysutil_memcpy(p_str->p_buf, p_src, len);
 p_str->p_buf[len] = '\0';
 p_str->len = len;
}

struct mystr
{
 char* p_buf;
 unsigned int len;
 unsigned int alloc_bytes;
};

consider NUL
terminator when

computing space

allocate space,
if needed

Copy in at most len
bytes from p_src

into p_str

void
private_str_alloc_memchunk(struct mystr* p_str, const char* p_src,
 unsigned int len)
{
 /* Make sure this will fit in the buffer */
 unsigned int buf_needed;
 if (len + 1 < len)
 {
 bug("integer overflow");
 }
 buf_needed = len + 1;
 if (buf_needed > p_str->alloc_bytes)
 {
 str_free(p_str);
 s_setbuf(p_str, vsf_sysutil_malloc(buf_needed));
 p_str->alloc_bytes = buf_needed;
 }
 vsf_sysutil_memcpy(p_str->p_buf, p_src, len);
 p_str->p_buf[len] = '\0';
 p_str->len = len;
}

struct mystr
{
 char* p_buf;
 unsigned int len;
 unsigned int alloc_bytes;
};

consider NUL
terminator when

computing space

allocate space,
if needed

copy in p_src
contents

Copy in at most len
bytes from p_src

into p_str

Defense: Secure Stdcalls
• Common problem: error handling

Defense: Secure Stdcalls
• Common problem: error handling

• Libraries assume that arguments are well-formed

Defense: Secure Stdcalls
• Common problem: error handling

• Libraries assume that arguments are well-formed
• Clients assume that library calls always succeed

Defense: Secure Stdcalls
• Common problem: error handling

• Libraries assume that arguments are well-formed
• Clients assume that library calls always succeed

• Example: malloc()

Defense: Secure Stdcalls
• Common problem: error handling

• Libraries assume that arguments are well-formed
• Clients assume that library calls always succeed

• Example: malloc()
• What if argument is non-positive?

- We saw earlier that integer overflows can induce this behavior
- Leads to buffer overruns

Defense: Secure Stdcalls
• Common problem: error handling

• Libraries assume that arguments are well-formed
• Clients assume that library calls always succeed

• Example: malloc()
• What if argument is non-positive?

- We saw earlier that integer overflows can induce this behavior
- Leads to buffer overruns

• What if returned value is NULL?
- Oftentimes, a de-reference means a crash
- On platforms without memory protection, a dereference can cause

corruption

void*
vsf_sysutil_malloc(unsigned int size)
{
 void* p_ret;
 /* Paranoia - what if we got an integer overflow/underflow? */
 if (size == 0 || size > INT_MAX)
 {
 bug("zero or big size in vsf_sysutil_malloc");
 }
 p_ret = malloc(size);
 if (p_ret == NULL)
 {
 die("malloc");
 }
 return p_ret;
}

void*
vsf_sysutil_malloc(unsigned int size)
{
 void* p_ret;
 /* Paranoia - what if we got an integer overflow/underflow? */
 if (size == 0 || size > INT_MAX)
 {
 bug("zero or big size in vsf_sysutil_malloc");
 }
 p_ret = malloc(size);
 if (p_ret == NULL)
 {
 die("malloc");
 }
 return p_ret;
}

fails if it receives
malformed

argument or runs
out of memory

Defense: Minimal Privilege

Defense: Minimal Privilege
• Untrusted input always handled by non-root process

• Uses IPC to delegate high-privilege actions
- Very little code runs as root

Defense: Minimal Privilege
• Untrusted input always handled by non-root process

• Uses IPC to delegate high-privilege actions
- Very little code runs as root

• Reduce privileges as much as possible
• Run as particular (unprivileged) user

- File system access control enforced by OS
• Use capabilities and/or SecComp on Linux

- Reduces the system calls a process can make

Defense: Minimal Privilege
• Untrusted input always handled by non-root process

• Uses IPC to delegate high-privilege actions
- Very little code runs as root

• Reduce privileges as much as possible
• Run as particular (unprivileged) user

- File system access control enforced by OS
• Use capabilities and/or SecComp on Linux

- Reduces the system calls a process can make

• chroot to hide all directories but the current one
• Keeps visible only those files served by FTP

Defense: Minimal Privilege
• Untrusted input always handled by non-root process

• Uses IPC to delegate high-privilege actions
- Very little code runs as root

• Reduce privileges as much as possible
• Run as particular (unprivileged) user

- File system access control enforced by OS
• Use capabilities and/or SecComp on Linux

- Reduces the system calls a process can make

• chroot to hide all directories but the current one
• Keeps visible only those files served by FTP

principle
of

least
privilege

Defense: Minimal Privilege
• Untrusted input always handled by non-root process

• Uses IPC to delegate high-privilege actions
- Very little code runs as root

• Reduce privileges as much as possible
• Run as particular (unprivileged) user

- File system access control enforced by OS
• Use capabilities and/or SecComp on Linux

- Reduces the system calls a process can make

• chroot to hide all directories but the current one
• Keeps visible only those files served by FTP

small
trusted

computing
base principle

of
least

privilege

Connection Establishment

connection
server

client

Connection Establishment

connection
server

client

TCP conn request

Connection Establishment

connection
server

client

command
processor

Connection Establishment

connection
server

client

command
processor

login
reader

Connection Establishment

connection
server

client

command
processor

login
reader USER, PASS

U+P
OK

OK

Connection Establishment

connection
server

client

command
processor

command
reader/

executor

Performing Commands

connection
server

command
processor

command
reader/

executor
client

Performing Commands

connection
server

command
processor

command
reader/

executor
client

CHDIR

OK

Performing Commands

connection
server

command
processor

command
reader/

executor
client

CHOWN

OK

C
H

O
W

N

O
K

Logging out

connection
server

command
processor

command
reader/

executor
client

Logging out

connection
server

client

Attack: Login

connection
server

client

command
processor

login
reader

Attack: Login

connection
server

client

command
processor

login
reader ATTACK

Attack: Login

connection
server

client

command
processor

login
reader ATTACK

• Login reader white-lists input
• And allowed input very limited
• Limits attack surface

Attack: Login

connection
server

client

command
processor

login
reader ATTACK

• Login reader white-lists input
• And allowed input very limited
• Limits attack surface

• Login reader has limited privilege
• Not root; authentication in separate process
• Mutes capabilities of injected code

Attack: Login

connection
server

client

command
processor

login
reader ATTACK

X

• Login reader white-lists input
• And allowed input very limited
• Limits attack surface

• Login reader has limited privilege
• Not root; authentication in separate process
• Mutes capabilities of injected code

• Comm. proc. only talks to reader
• And, again, white-lists its limited input

Attack: Commands

connection
server

command
processor

command
reader/

executor
client

Attack: Commands

connection
server

command
processor

command
reader/

executor
client

ATTACK

Attack: Commands

connection
server

command
processor

command
reader/

executor
client

ATTACK

• Command reader sandboxed
• Not root
• Handles most commands
• Except few requiring privilege

Attack: Commands

connection
server

command
processor

command
reader/

executor
client

C
H

O
W

N

O
K

ATTACK

X

• Command reader sandboxed
• Not root
• Handles most commands
• Except few requiring privilege

• Comm. proc. only talks to reader
• And, again, white-lists its limited input

Attack: Cross-session

connection
server

client 2

client 1

Attack: Cross-session

connection
server

client 2

client 1
command
processorcommand

reader/
executor

Attack: Cross-session

connection
server

command
processorcommand

reader/
executor

client 2

client 1
command
processorcommand

reader/
executor

Attack: Cross-session

connection
server

command
processorcommand

reader/
executor

client 2

client 1
command
processorcommand

reader/
executor

Attack: Cross-session

connection
server

command
processorcommand

reader/
executor

client 2

client 1
command
processorcommand

reader/
executor

CMD

CMD

Attack: Cross-session

connection
server

command
processorcommand

reader/
executor

client 2

ATTACKX
• Each session isolated

• Only can talk to one client

client 1
command
processorcommand

reader/
executor

CMD

CMD

Separation of responsibilities

Separation of responsibilities

Separation of responsibilities

Separation of responsibilities

TCB: KISS

Separation of responsibilities

TCB: KISS

Separation of responsibilities

TCB: KISS

Separation of responsibilities

TCB: KISS

TCB: Privilege separation

Separation of responsibilities

TCB: KISS

TCB: Privilege separation

Separation of responsibilities

TCB: KISS

TCB: Privilege separation

Separation of responsibilities

TCB: KISS

TCB: Privilege separation

Principle of least privilege

Separation of responsibilities

TCB: KISS

TCB: Privilege separation

Principle of least privilege

Separation of responsibilities

TCB: KISS

TCB: Privilege separation

Principle of least privilege

Separation of responsibilities

Kerkhoff’s principle!

TCB: KISS

TCB: Privilege separation

Principle of least privilege

CHROMIUM ARCHITECTURE

Rendering Engine:  
Interprets and executes web content

Outputs rendered bitmaps

The website is the “untrusted code”

Browser Kernel:  
Stores data (cookies, history, clipboard)

Performs all network operations

Goal: Enforce a narrow  
interface between the two

CHROMIUM’S SANDBOX
Makes extensive use of the underlying
OS’s primitives

1. Restricted security token

 The OS then provides complete mediation  
 on access to “securable objects”

 (Security token set s.t. it fails almost always)

2. Separate desktop

 Avoid Windows API’s lax security  
 checks

3. Windows Job Object

 Can’t fork processes; can’t access clipboard

CHROMIUM’S BROWSER KERNEL INTERFACE

Goal: Do not leak the ability to read
or write the user’s file system

1. Restrict rendering

Rendering engine doesn’t get a window handle

Instead, draws to an off-screen bitmap

Browser kernel copies this bitmap to the screen

3. Restrict user input

Rendering engine doesn’t get user input directly

Instead, browser kernel delivers it via BKI

2. Network & I/O

Rendering engine requests uploads, 
downloads, and file access thru BKI

