Principles for secure
adesign

Some of the slides and content are from Mike Hicks’ Coursera course

Making secure software

 Flawed approach: Design and build software, and
ignore security at first

- Add security once the functional requirements are
satisfied

» Better approach: Build security in from the start

Incorporate security-minded thinking into all phases of
the development process

Development process

Four common phases of development

Reduirements ————— Abuse Cases
; ______———==Architectural Risk Analysis

Design —— . . .
J ____——— Security-oriented Design

|mp|.ementation —___———Code Review (with tools)
Testing/assurance —— p;;

\based Security Tests
Penetration Testing

Security activities apply to all phases

Development process

Four common phases of development

Security Requirements
4— Abuse Cases
T Architectural Risk Analysis

Design ——

.[Tmplementation Security-o_rientec_i Design

_ Code Review (with tools)

| ased Security Tests

We've been talking Penetration Testing
about these

Security activities apply to all phases

Development process

Four common phases of development

Security Requirements

This class is-| Requirements _ Abuse Cases
about these - Archlteci_‘ural I:':’lSk Analy§ls
.[Tmplementation Security-oriented Design
_ Code Review (with tools)
' Wased Security Tests
We’ve been ta‘klng Penetration TeSting

about these

Security activities apply to all phases

Designing secure systems

 Model your threats

* Define your security requirements

- What distinguishes a security requirement from a
typical “software feature™”

* Apply good security design principles

T'hreat Modeling

T hreat Moael

* [he threat model makes explicit the adversary’s
assumed powers

- Consequence: The threat model must match reality,
otherwise the risk analysis of the system will be wrong

* [he threat model Is critically important

If you are not explicit about what the attacker can do,
how can you assess whether your design will repel that
attacker?

T hreat Moael

* [he threat model makes explicit the adversary’s
assumed powers

- Consequence: The threat model must match reality,
otherwise the risk analysis of the system will be wrong

* [he threat model Is critically important

If you are not explicit about what the attacker can do,
how can you assess whether your design will repel that
attacker?

“This system is secure” means nothing
in the absence of a threat model

A few different network threat models

g
S5

Mallcious user

A few different network threat models

Malicious user Snooping

A few different network threat models

Malicious user SNnooping Co-located user

A few different network threat models

Malicious user SNoopIiNg Co-located user Compromised server

Threat-driven Design

Different threat models will elicit different responses

Only malicious users: implies message traffic is safe

No need to encrypt communications

+ This is what telnet remote login software assumed

Snooping attackers: means message traffic is visible
SO use encrypted witi (link layer), encrypted network layer

(IPsec), or encrypted application layer (SSL)

- Which is most appropriate for your system?

Co-located attacker: can access local files, memory
Cannot store unencrypted secrets, like passwords
ikewise with a compromised server

More on these
when we get
to networking

In fact, even

encrypting t
S
er)

mig

Al

NOot S

(More la

Nem

icel

Threat-driven Design

* Different threat models will elicit different responses

* Only malicious users: implies message traffic is safe

- No need to encrypt communications
+ This is what telnet remote login software assumed

* Snooping attackers: means message traffic is visible

+ So use encrypted wifi (link layer), encrypted network layer More on these

(IPsec), or encrypted application layer (SSL) when we get
- Which is most appropriate for your system? to networking

 Co-located attacker: can access local files, memory N fact, even
- Cannot store unencrypted secrets, like passwords encrypting them

. . . . might not suffice!
lkewise with a compromised server J
(More later)

Bad Model = Bad Security

 Any assumptions you make Iin your model are
potential holes that the adversary can exploit

Bad Model = Bad Security

 Any assumptions you make Iin your model are
potential holes that the adversary can exploit

 E.g.: Assuming no snooping users no longer valid
« Prevalence of wi-fi networks in most deployments

Bad Model = Bad Security

 Any assumptions you make Iin your model are
potential holes that the adversary can exploit

 E.g.: Assuming no snooping users no longer valid
« Prevalence of wi-fi networks in most deployments

o Other mistaken assumptions

» Assumption:

—ncrypted traffic carries no information

Bad Model = Bad Security

 Any assumptions you make Iin your model are
potential holes that the adversary can exploit

 E.g.: Assuming no snooping users no longer valid
« Prevalence of wi-fi networks in most deployments

o Other mistaken assumptions

- Assumption: Encrypted traffic carries no information
Not true! By analyzing the size and distribution of messages, you
can infer application state

- Assumption: Timing channels carry little information

Not true! Timing measurements of previous RSA implementations
could be used eventually reveal a remote SSL secret key

Bad Model = Bad Security

Assumption: Encrypted traffic carries no information

Skype encrypts its packets, so we're not revealing anything, right?

Unigram frequencies for Speex bit rates

Language ldentification of Encrypted VolP Traffic: 035 — eng'lish
Alejandra y Roberto or Alice and Bob? B bportuguese
0.30| [mm@ german
[hungarian
Charles V. Wright Lucas Ballard Fabian Monrose Gerald M. Masson 0.25}
£ 0.20
: : : 5
But Skype varies its packet sizes...
a 0.15
0.10 B il

e 2.15 3.95 5.95 8.0 11.0 15.0 18.2 24.6

bit rate (kbps)

Figure 2: Unigram frequencies of bit rates for English,
Brazilian Portuguese, German and Hungarian

Bad Model = Bad Security

Assumption: Encrypted traffic carries no information

Skype encrypts its packets, so we're not revealing anything, right?

Unigram frequencies for Speex bit rates

0.35

Language ldentification of Encrypted VolP Traffic: — engllish

Alejandra y Roberto or Alice and Bob? 0.5 | ™™ Dbportuguese
" || 3 hungarian
Charles V. Wright Lucas Ballard Fabian Monrose Grerald M. Masson 0.25}
But Skype varies its packet sizes...
...and different languages have different N i |
word/unigram lengths... d i

0.00 2.15 3.95 5.95 8.0 11.0 15.0 18.2 24.6
bit rate (kbps)

Figure 2: Unigram frequencies of bit rates for English,
Brazilian Portuguese, German and Hungarian

Bad Model = Bad Security

Assumption: Encrypted traffic carries no information

Skype encrypts its packets, so we're not revealing anything, right?

Language ldentification of Encrypted VolP Traffic:
Alejandra y Roberto or Alice and Bob?

Charles V. Wright Lucas Ballard Fabian Monrose Grerald M. Masson

But Skype varies its packet sizes...

...and different languages have different
word/unigram lengths...

...SO you can infer what language two
people are speaking based on packet sizes!

Unigram frequencies for Speex bit rates

0.35

Bl english

B bportuguese
0.30| [mm@ german

[hungarian

0.25f

(-]

N

(=)
T

probability

&
—

0.10

0.05

2.15 3.95 5.95 8.0 11.0 15.0 18.2 24.6
bit rate (kbps)

0.00

Figure 2: Unigram frequencies of bit rates for English,
Brazilian Portuguese, German and Hungarian

~INdINg a good model

- Compare against similar systems
- What attacks does their design contend with®?

- Understand past attacks and attack patterns
How do they apply to your system?

- Challenge assumptions in your design

- What happens it an assumption is untrue”?
- What would a breach potentially cost you”

How hard would it be to get rid of an assumption,

allowing for a stronger adversary?
- What would that development cost?

You have your threat model.

Now let’'s define what we need to defend against.

Security Requirements

Security Requirements

o Software requirements typically about what the
software should do

* \We also want to have security requirements

Security-related goals (or policies)

Example: One user’s bank account balance should not be learned
by, or moditied by, another user, unless authorized

Required mechanisms for enforcing them
Example:

1

2.

.Users identify themselves using passwords,

Passwords must be “strong,” and

3.The password database is only accessible to login program.

Typical Kinds of Requirements

- Policies
- Confidentiality (and Privacy and Anonymity)
Integrity
- Avallability

e Supporting mechanisms
- Authentication
- Authorization
- Audit-ability
Encryption

Supporting mechanisms

These relate identities (“principals”) to actions

Authentication Authorization Audit-ability

Supporting mechanisms

These relate identities (“principals”) to actions

Authentication Authorization Audit-ability

How can a system
tell who a user Is

Supporting mechanisms

These relate identities (“principals”) to actions

Authentication

How can a system
tell who a user Is

What we know
What we have
What we are
>1 of the above =
Multi-factor authentication

Authorization

Audit-ability

Supporting mechanisms

These relate identities (“principals”) to actions

Authentication

How can a system
tell who a user Is

What we know
What we have
What we are
>1 of the above =
Multi-factor authentication

Authorization

How can a system
tell what a user iIs
allowed (o do

Audit-ability

Supporting mechanisms

These relate identities (“principals”) to actions

Authentication

How can a system
tell who a user Is

What we know
What we have
What we are
>1 of the above =
Multi-factor authentication

Authorization

How can a system
tell what a user iIs
allowed (o do

Access control policies
(defines)
+
Mediator
(checks)

Audit-ability

Supporting mechanisms

These relate identities (“principals”) to actions

Authentication

How can a system
tell who a user Is

What we know
What we have
What we are
>1 of the above =
Multi-factor authentication

Authorization

How can a system
tell what a user iIs
allowed (o do

Access control policies
(defines)
+
Mediator
(checks)

Audit-ability
How can a system
tell what a user did

Supporting mechanisms

These relate identities (“principals”) to actions

Authentication

How can a system
tell who a user Is

What we know
What we have
What we are
>1 of the above =
Multi-factor authentication

Authorization

How can a system
tell what a user iIs
allowed (o do

Access control policies
(defines)
+
Mediator
(checks)

Audit-ability
How can a system
tell what a user did

Retain enough info
to determine the
circumstances of a
breach

Def

NiNg Security Requirements

 Many processes for deciding security requirements

« Example: General policy concerns
Due to regulations/standards (HIPAA, SOX, etc.)
Due organizational values (e.g., valuing privacy)

 Example: Policy arising from threat modeling

+ Wh

- W

ch attacks cause the greatest concern®

no are the likely adversaries and what are their goals and

methods?

+ Wh

ich attacks have already occurred?’

- Within the organization, or elsewhere on related systems?

Abuse Cases

Abuse cases lIllustrate security requirements

Where use cases describe what a system should
do, abuse cases describe what it should not do

Example use case: The system allows bank
managers to modity an account’s interest rate

Example abuse case: A user is able to spoof being
a manager and thereby change the interest rate on
an account

Defining Abuse Cases

o Construct cases in which an adversary’s exercise of
power could violate a security requirement
- Based on the threat model

- What might occur it a security measure was removed?

« Example: Co-located attacker steals password file and
learns all user passwords
» Possible if password file is not encrypted

« Example: Snooping attacker replays a captured message,
effecting a bank withdrawal

» Possible if messages are have no nonce (a small amount of

unigueness/randomness - like the time of day or sequence
numbery)

Security design
principles

Design Defects = Flaws

e Recall that software defects consist of both flaws

and bugs
- Flaws are problems in the design
- Bugs are problems in the implementation

- We avoid flaws during the design phase

* According to Gary McGraw,
50% of security problems are flaws

» S0 this phase is very important

Categories of Principles

Categories of Principles

- Prevention

- Goal: Eliminate software defects entirely

- Example: Heartbleed bug would have been prevented by
using a type-safe language, like Java

Categories of Principles

- Prevention

- Goal: Eliminate software defects entirely

- Example: Heartbleed bug would have been prevented by
using a type-safe language, like Java

- Mitigation
+ Goal: Reduce the harm from exploitation of unknown defects

Categories of Principles

- Prevention

- Goal: Elimi

- Example:

using a type-sa

- Mitigation
- Goal: Red
- Example:

1

ate
ear

softwa
bleed

e lang

e defects e

ntirely

oug would h

ave been prevented by

uage, like Java

uce the harm from exploitation of unknown detects
Run each browser tab In a separate process, so

exploitation of one tab does not yield access to data in another

- Detection (and Recovery)
nd understand an attack (and undo damage)

- Goal: |dentity a
- Example: Moni

oring (e.q., expected invariants), snapshotting

Principles for building secure systems

General rules of thumb that,
when neglected, result in design flaws

Security IS economics

Principle of least privilege » Accept that threat models change
Use fail-safe defaults » If you can't prevent, detect

Use separation of responsibility » Design security from the ground up
Detend in depth e Prefer conservative designs

Account for human factors . Proactively study attacks
Ensure complete mediation

Kerkhoff’'s principle

‘Security i1Is economics’

You can't afford to secure against everything, so what do you defend against?
Answer: That which has the greatest “return on investment”

THERE ARE NO SECURE SYSTEMS, ONLY DEGREES OF INSECURITY

* [n practice, need to resist a certain level of attack
- Example: Safes come with security level ratings
‘Safe against safecracking tools & 30 min time [imit”

» Corollary: Focus energy & time on weakest link

* Corollary: Attackers follow the path of least
resistance

"Principle of least privilege”

Give a program the access it legitimately needs to do its job. NOTHING MORE

* This doesn’'t necessarily reduce probability of tfailure
 Reduces the EXPECTED COST

 Example: Unix does a BAD JOB:

» Every program gets all the privileges of the user who invoked it
* vim as root: it can do anything -- should just get access to file

* Example: Windows JUST AS BAD, MAYBE WORSE

» Many users run as Administrator,
- Many tools require running as Administrator

‘Use tall-safe detaults”

Things are going to break. Break safely.

- Default-deny policies
» Start by denying all access
- Then allow only that which has been explicitly permitted

- Crash => fail to secure behavior

- Example: firewalls explicitly decide to forward
- Fallure => packets don't get through

"Use separation of responsibility”

Split up privilege so No one person or program has total power.

 Example: US government
- Checks and balances among different branches

« Example: Movie theater
* One employee sells tickets, another tears them
- Tickets go Into lockbox

 Example: Nuclear weapons...

Use separation of responsibility

‘Defend in depth”

Use multiple, redundant protections

* Only In the event that all of them have been breached
should security be endangered.

 Example: Multi-factor authentication:

+ Some combination of password, image selection, USB
dongle, fingerprint, iris scanner,... (more on these later)

« Example: “You can recognize a security guru who Is

particularly cautious If you see someone wearing both....

A

_.,ca:.«. .
////. Ve’ &00

://.}.6
N -
. V}Jn.v J

.z/

...a belt and suspenders

Defense in depth

...a belt and suspenders

N

._ Qﬁ.&,fo.ﬂ
A)

&on,

/hJ h.v

‘Ensure complete mediation”

Make sure your reference monitor sees every access to every object

* Any access control system has some resource it needs
to enforce
- Who is allowed to access a files
- Who Is allowed to post to a message board...

- Reference Monitor: The piece of code that checks for
permission to access a resource

Ensure complete mediation

‘Account for human factors”

(1) "Psychological acceptability”:
Users must buy into the security model

* The security of your system ultimately lies in the hands of
those who use |It.

* |t they don't believe in the system or the cost it takes to
secure It, then they won't do It.

 Example: “All passwords must have 15 characters, 3
numbers, 6 hieroglyphics, ...

Account for human factors (“psychological acceptability”)
(1) Users must buy into the security

‘Account for human factors”

(2) The security system must be usable

* The security of your system ultimately lies in the hands of
those who use |It.

e |fitis too hard to act in a secure fashion, then they won't
do It.

 Example: Popup dialogs

Account for human factors
(2) The security system must be usable

Internet Explorer 1 X|

L ?) ‘Wwhen you send information to the Intemet, it might be
"ﬁ possible for others to see that infarmation. Do you want
to continue”

v |n the future, do not show this message.

Account for human factors
(2) The security system must be usable

Internet Explorer X|

- -

T) When you see a dialog box like this, click "Yes' to
make it go away. If available, click the checkbox
first to avoid being bothered by it again.

[V |n the future, do not show this message.

Account for human factors
(2) The security system must be usable

Website Certified by an Unknown Authority X|

Unable to verify the identity of swn.xiph.org as a trusted site,

/P
(s Possible reasons For this error:
- Your browser does not recognise the Certificate Authority that issued the site's certificate,
- The site's certificate is incomplete due to a server misconfigur ation,

- You are connected to a site pretending ko be svn.xiph.org, possibly to obtain wvour
confidential information.

Please notify the site's webmaster about this problem.

Before accepting this certificate, vou should examine this site's certificate carefully. Are you
willing to ko accept this certificate For the purpose of identifying the Web site svn, xiph.org?

Examine Certificate. .. I

" Accept this certificate permanently

* Accept this certificate temporarily For this session

" Do not accept this certificate and do not connect ko this Web site

Cancel |

Account for human factors
(2) The security system must be usable

Website Certified by an Unknown Authority

. Unable to verify the identity of svn.xiph.org as a trusted site,
[! ' Blah blah geekspeak geskspeak geskspeak.,

Before accepting this certificate, yvour browsar can display a second dialog
full of incomprehensible information. Do you want to view this dislog?

View Incomprehensible Information

(¢ Make this message go away permanenthy
(" Make this message go away temporarily For this session
(" Stop doing what vou were trying to do

‘Account for human factors”

(2) The security system must be usable

* The security of your system ultimately lies in the hands of
those who use |It.

e |fitis too hard to act in a secure fashion, then they won't
do It.

 Example: Popup dialogs

"Kerkhott's principle”

Don't rely on security through obscurity

* Originally defined in the context of crypto systems
(encryption, decryption, digital signatures, etc.):

e Crypto systems should remain secure even when an
attacker knows all of the internal details

» |t is easier to change a compromised key than to update all
code and algorithms

* [he best security is the light of day

Kerkhotft’s principle??

Kerkhott's principle!

Principles for building secure systems

Know these well:

e Security IS economics

* Principle of least privilege

» Use fall-safe defaults

* Use separation of responsibility
 Defend in depth

e Account for human factors
 Ensure complete mediation

o Kerkhoff’s principle

Self-explanatory:

* Accept that threat models change;

adapt your designs over time

It you can't prevent, detect

Design security from the ground up
Prefer conservative designs
Proactively study attacks

SANDBOXES

Execution environment that restricts what
an application running in it can do

NaCl’s Takes arbitrary x86, runs it in a sandbox in a browser

restrictions Restrict applications to using a narrow API
Data integrity: No reads/writes outside of sandbox

No unsafe instructions

CFI

Chromium’s Runs each webpage’s rendering engine in a sandbox

restrictions Restrict rendering engines to a narrow “kernel” API

Data integrity: No reads/writes outside of sandbox
(incl. the desktop and clipboard)

-
A
N

:
2 .
o
__/—.‘

.

”-‘.

What have I done
to deserve this?

Sandbox mental model

Sandbox
Narrow
interface « Even the untrusted code
Untrusted /. | Trusted needs input and output
code & data code & data .
 The goal of the sandbox is to
constrain what the untrusted
All data and Can access data program can execute, what
syscalls must Can make syscalls data it can access, what

be accessed via system calls it can make, etc.
the narrow 1/t

Example sandboxing mechanism: SecComp

e Linux system call enabled since 2.6.12 (2005)

- Affected process can subsequently only perform

read, write, exit, and sigreturn system calls
No support for open call: Can only use already-open file descriptors

Isolates a process by limiting possible interactions

* Follow-on work produced seccomp-bpf

- Limit process to policy-specific set of system calls,

subject to a policy handled by the kernel
Policy akin to Berkeley Packet Filters (BPF)

« Used by Chrome, OpenSSH, vsftod, and others

l[dea: |Isolate rFlash Player

. d)
|
.

l[dea: |Isolate rFlash Player

e Receive .swf code, save it

SWi
code

l[dea: |Isolate rFlash Player

 Receive .swf code, save it
e Call fork to create a new process

SWi
code

l[dea: |Isolate rFlash Player

e Receive .swf code, save it

e Call fork to create a new process
* |n the new process, open the file

l[dea: |Isolate rFlash Player

e Recelve .swf code, save it

e Call fork to create a new process
* |n the new process, open the file
o Call exec to run Flash player

l[dea: |Isolate rFlash Player

e Recelve .swf code, save it

Call fork to create a new process

In the new process, open the file

Call exec to run Flash player

Call seccomp-bpf to compartmentalize

ll ‘r- II
T

code

Sandboxing as a design principle

Sandbox
Narrow
interface
Untrusted Trusted
—p

code & data code & data

- 3rd party binaries (NaCl)
- Webpages (Chromium)

- Modules of your own code:

Mitigate the impact of the inevitability
that your code has an exploitable bug

» It’s not just 3rd-party code that

should be sandboxed: sandbox your
own code, too!

* Break up your program into

modules that separate
responsibilities (what you should
be doing anyway)

« Give each module the least

privileges it needs to do its job

* Use the sandbox to enforce what

exactly a given module can/can’t do

Case study: VSFTPD

Very Secure FTPD

FTP: File Transter Protocol

More popular before the rise of HT TP, but still in use

90's and O0’s: FTP daemon compromises were frequent and
costly, e.g., In Wu-FTPD, ProFTPd, ...

Very thoughtful design aimed to prevent and
mitigate security defects

But also to achieve good performance
Written in C

Written and maintained by Chris Evans since 2002
No security breaches that | know of

hitps://security.appspot.com/vsitpd.html

https://security.appspot.com/vsftpd.html

VSFTPD Threat model

Clients untrusted, until authenticated

» Once authenticated, limited trust:
According to user's file access control policy
For the files being served FTP (and not others)

Possible attack goals
Steal or corrupt resources (e.g., files, malware)
Remote code injection

- Circumstances:
Client attacks server
Client attacks another client

Defense: Secure Strings

struct mystr
1
char* PRIVATE HANDS OFF p buf;
unsigned int PRIVATE HANDS OFF len;
unsigned i1nt PRIVATE HANDS OFF alloc bytes;

}i

Defense: Secure Strings

struct mystr

{
char* PRIVATE HANDS OFF p buf;

unsigned int PRIVATE HANDS OFF len;
unsigned i1nt PRIVATE HANDS OFF alloc bytes;

}i

Normal (zero-terminated) C string

Defense: Secure Strings

struct mystr
1
char* PRIVATE HANDS OFF p buf;
unsigned int PRIVATE HANDS OFF len;
unsigned i1nt PRIVATE HANDS OFF alloc bytes;

}i

Normal (zero-terminated) C string

The actual length (i.e., strlen(PRIVATE HANDS OFF p buf))

Defense: Secure Strings

struct mystr
1
char* PRIVATE HANDS OFF p buf;
unsigned int PRIVATE HANDS OFF len;
unsigned int PRIVATE HANDS OFF alloc bytes;

}i

Normal (zero-terminated) C string

The actual length (i.e., strlen(PRIVATE HANDS OFF p buf))

Size of buffer returned by malloc

Defense: Secure Strings

struct mystr
1
char* PRIVATE HANDS OFF p buf;
unsigned int PRIVATE HANDS OFF len;
unsigned i1nt PRIVATE HANDS OFF alloc bytes;

}i

Normal (zero-terminated) C string

The actual length (i.e., strlen(PRIVATE HANDS OFF p buf))

Size of buffer returned by malloc

void

private str alloc memchunk(struct mystr* p str, const char* p src,
unsigned int len)

{
struct mystr
) {
char* p buf;
unsigned 1int len;
unsigned int alloc bytes;
. i
void

str copy(struct mystr* p dest, const struct mystr* p src)

{

private str alloc memchunk(p dest, p src->p buf, p src->len);

}

replace uses of char* with struct mystr*
and uses of strcpy with str copy

void

unsigned int len)

{

private str alloc memchunk(struct mystr* p str, const char* p src,

/* Make sure this will fit in the buffer */
unsigned int buf needed;
if (len + 1 < len)

{

bug("integer overflow");

}

{

}i

struct mystr

char* p buf;
unsigned 1int 1len;
unsigned int alloc bytes;

buf needed len + 1;

if (buf needed > p str->alloc bytes)
{

str free(p str);

s setbuf(p str, vsf sysutil malloc(buf needed));
p str->alloc bytes buf needed;
}

vsf sysutil memcpy(p str->p buf, p src, 1len);
p str->p buf[len] '\0"';
p str->len len;

}

Copy in at most 1len
bytes from p src

Intop str

void
private str alloc memchunk(struct mystr* p str,
unsigned int len)

{

const char*

p src,

/* Make sure this will fit in the buffer */
unsigned int buf needed;
if (len + 1 < len)

{

bug("integer overflow");

{
consider NUL

terminator when
computing space

struct mystr

char* p buf;
unsigned 1int 1len;
unsigned int alloc bytes;

}i
}
buf needed = len + 1;
if (buf needed > p str->alloc bytes)
{

str free(p str);

s setbuf(p str, vsf sysutil malloc(buf needed));
p str->alloc bytes buf needed;
}

vsf sysutil memcpy(p str->p buf, p src, 1len);
p str->p buf[len] '\0"';
p str->len len;

}

Copy in at most 1len
bytes from p src

iIntop str

void
private str alloc memchunk(struct mystr* p str,
unsigned int len)

{
/* Make sure this will fit in the buffer */
unsigned int buf needed;
if (len + 1 < len)

consider NUL

{ terminator when
bug("integer overflow"); KeelaglelSitisleR]el:1els

}

str free(p str);

p str->alloc bytes =
}
vsf sysutil memcpy(p str->p buf, p src, 1len);
p str->p buf[len] = '\0';
p str->len = len;

buf needed;

}

buf needed = len + 1;
if (buf_needed > p_str->alloc_bytes) FEl|leforzii=N:lot101cF
{

If needed

s setbuf(p str, vsf sysutil malloc(buf needed));

const char* p src,

struct mystr

{
char* p buf;
unsigned int len;
unsigned int alloc bytes;

}i

Copy in at most 1len
bytes from p src

iIntop str

void
private str alloc memchunk(struct mystr* p str,
unsigned int len)

{
/* Make sure this will fit in the buffer =*/
unsigned int buf needed;
if (len + 1 < len)

consider NUL

{ terminator when
bug("integer overflow"); KeelaglelSitisleR]el:1els

}

buf needed = len + 1;

if (buf needed > p str->alloc bytes)
{

str free(p str);

p str->alloc bytes =
}
vsf sysutil memcpy(p str->p buf, p src, 1len);
p str->p buf[len] = '\0';
p str->len = len;

buf needed;

}

allocate space,
If needed

s setbuf(p str, vsf sysutil malloc(buf needed));

const char* p src,

struct mystr

{
char* p buf;
unsigned int len;
unsigned int alloc bytes;

}i

Copy in at most 1len
bytes from p src

iIntop str

COpY In p_src
contents

Defense: Secure Stdcalls

 Common problem: error handling

Defense: Secure Stdcalls

 Common problem: error handling
- Libraries assume that arguments are well-formed

Defense: Secure Stdcalls

 Common problem: error handling
- Libraries assume that arguments are well-formed
+ Clients assume that library calls always succeed

Defense: Secure Stdcalls

 Common problem: error handling
- Libraries assume that arguments are well-formed
+ Clients assume that library calls always succeed

e Example: malloc ()

Defense: Secure Stdcalls

 Common problem: error handling
Libraries assume that arguments are well-formed
Clients assume that library calls always succeed

e Example: malloc ()

- What if argument is non-positive”?
We saw earlier that integer overtlows can induce this behavior
Leads to bufter overruns

Defense: Secure Stdcalls

 Common problem: error handling
- Libraries assume that arguments are well-formed
+ Clients assume that library calls always succeed

e Example: malloc ()

- What if argumr

We saw earlier t

er

t IS non-positive”?

ha

' integer overflows can induce this behavior

| eads to buffer overruns

« What If returned value i1s NULL?
Oftentimes, a de-reference means a crash

corruption

On platforms without memory protection, a dereference can cause

void*
vsf sysutil malloc(unsigned int size)

{

void* p ret;

/* Paranoia - what if we got an integer overflow/underflow? */
if (size == 0 || size > INT MAX)

{

bug("zero or big size in vsf sysutil malloc");

}

p ret = malloc(size);

if (p ret == NULL)
{

die("'malloc");
}

return p ret;

fails If It recelves

void*
vsf sysutil malloc(unsigned int size)

{

malformed

argument or runs
out of memory

void* p ret;
/* Paranoia - what if we got an integer overflow/underflow? */
if (size == 0 || size > INT MAX)

{

bug("zero or big size in vsf sysutil malloc");

}

p_ret = malloc(size);

if (p ret == NULL)
{

die('malloc");
'

return p ret;

Defense: Minimal Privilege

Defense: Minimal Privilege

 Untrusted input always handled by non-root process

» Uses IPC to delegate high-privilege actions
- Very little code runs as root

Defense: Minimal Privilege

 Untrusted input always handled by non-root process

» Uses IPC to delegate high-privilege actions
Very little code runs as root

 Reduce privileges as much as possible

Run as particular (unprivileged) user
—ile system access control enforced by OS

Use capabilities and/or SecComp on Linux
Reduces the system calls a process can make

Defense: Minimal Privilege

 Untrusted input always handled by non-root process

» Uses IPC to delegate high-privilege actions
- Very little code runs as root

 Reduce privileges as much as possible

+ Run as particular (unprivileged) user
—ile system access control enforced by OS

+ Use capabilities and/or SecComp on Linux
- Reduces the system calls a process can make

* chroot to hide all directories but the current one
- Keeps visible only those files served by FTP

Defense: Minimal Privilege

 Untrusted input always handled by non-root process

» Uses IPC to delegate high-privilege actions
- Very little code runs as root

» Reduce prlylleges as t.’n.uch as possible principle
- Run as particular (unprivileged) user of
~ille system access control enforced by OS
ACC | least
- Use capabilities and/or SecComp on Linux Vil
- Reduces the system calls a process can make priviiege

* chroot to hide all directories but the current one
- Keeps visible only those files served by FTP

Defense: Minimal Privilege

 Untrusted input always handled by non-root process

» Uses IPC to delegate high-privilege actions
- Very little code runs as root small

trustea
» Reduce privileges as much as possible Corggsgng orinciple
» Run as particular (unprivileged) user of
~ile system access control enforced by OS least
» Use capabilities and/or SecComp on Linux .
- Reduces the system calls a process can make P I’/VI/GQG

* chroot to hide all directories but the current one
» Keeps visible only those ftiles served by FTP

Connection Establishment

connection
server

Connection Establishment

connection
server

Connection Establishment

connection command
server Drocessor

Connection Establishment

connection command
server Drocessor

login
reader

Connection Establishment

connection command
server Drocessor
;;gﬂ
ﬁ
login
reader

OK
USER, PASS

Connection Establishment

connection command
server Drocessor

commanad

reader/
executor

Performing Commands

connection command
server Drocessor

command
reader/
executor

Performing Commands

connection command
server Drocessor

reader/
executor

Performing Commands

connection command
server Drocessor

command
reader/
executor

| 0gQgIng out

connection command
server Drocessor

command
reader/
executor

| 0gQgIng out

connection
server

Attack: Login

connection command
server Drocessor

Attack: Login

connection command

Server

Processor

ATTACK

Attack: Login

Login reader white-lists input
 And allowed input very limited
* Limits attack surface

connection command

Server

Processor

ATTACK

Attack: Login

Login reader white-lists input
 And allowed input very limited
* Limits attack surface

connection el command - Login reader has limited privilege

server Processor Not root; authentication in separate process
 Mutes capabilities of injected code

II{ cad> JII ATTACK
EEEEER

Attack: Login

Login reader white-lists input
 And allowed input very limited

* Limits attack surface

command - Login reader has limited privilege

Processor Not root; authentication in separate process
 Mutes capabilities of injected code

Comm. proc. only talks to reader
* And, again, white-lists its limited input

connection
server

Ill cad> JII ATTACK
EEEEEN

Attack: Commands

connection command
server Drocessor

command
reader/
executor

Attack: Commands

connection command

server pDrocessor

command
reader/

Seetiog ATTACK

Attack: Commands

Command reader sandboxed

* Not root
| * Handles most commands
connection command e Except few requiring privilege

server pDrocessor

EEEEEE
IIrJ()derCWII

eader’
exiCLtdr i TACK

Commands

Command reader sandboxed

* Not root
| * Handles most commands
connection command e Except few requiring privilege
server Drocessor

Comm. proc. only talks to reader
* And, again, white-lists its limited input

command
reader/ R —

Seetiog ATTACK

Attack: Cross-session

connection
server

Attack: Cross-session

connection C
server o

command
reader/
executor

Attack: Cross-session

connection C
server o

command
reader/
executor

C
command

reader/
executor

Attack: Cross-session

connection C q
server S comman

reader/
executor

C
command
reader/
executor

Attack: Cross-session

connection C

command
reader/
executor

server 0

C
command

reader/

executor CMD

Attack: Cross-session

connection ® AN
reader/ CMD
executor

- Each session isolated
* Only can talk to one client

C
command
reader/

executor

Presenting vsftpd's secure design

vsftpd employs a secure design. The UNIX facilities outlined above are used
to good effect. The design decisions taken are as follows:

1) All parsing and acting on potentially malicious remote network data 1is
done in a process running as an unprivileged user. Furthermore, this process
runs in a chroot() jail, ensuring only the ftp files area is accessible.

2) Any privileged operations are handled in a privileged parent process. The
code for this privileged parent process is as small as possible for safety.

3) This same privileged parent process receives requests from the unprivileged
child over a socket. All requests are distrusted. Here are example requests:

- Login request. The child sends username and password. Only if the details
are correct does the privileged parent launch a new child with the appropriate
user credentials.

- chown() request. The child may request a recently uploaded file gets
chown'ed() to root for security purposes. The parent is careful to only allow
chown() to root, and only from files owned by the ftp user.

- Get privileged socket request. The ftp protocol says we are supposed to

emit data connections from port 20. This requires privilege. The privileged
parent process creates the privileged socket and passes it to child over

the socket.

4) This same privileged parent process makes use of capabilities and chroot(),
to run with the least privilege required. After login, depending on what
options have been selected, the privileged parent dynamically calculates what
privileges it requires. In some cases, this amounts to no privilege, and the
privileged parent just exits, leaving no part of vsftpd running with
privilege.

5) vsftpd-2.0.0 introduces SSL / TLS support using OpenSSL. ALL OpenSSL
protocol parsing is performed in a chroot() jail, running under an unprivileged
user. This means both pre-authenticated and post-authenticated OpenSSL protocol
parsing; it's actually quite hard to do, but vsftpd manages it in the name of
being secure. I'm unaware of any other FTP server which supports both SSL / TLS
and privilege separatation, and gets this right.

Comments on this document are welcomed.

Presenting vsftpd's secure design

vsftpd employs a secure design. The UNIX facilities outlined above are used
to good effect. The design decisions taken are as follows:

1) All parsing and acting on potentially malicious remote network data 1is

done in a process running as an unprivileged user. Furthermore, this process
runs in a chroot() jail, ensuring only the ftp files area is accessible.

2) Any privileged operations are handled in a privileged parent process. The
code for this privileged parent process is as small as possible for safety.

3) This same privileged parent process receives requests from the unprivileged
child over a socket. All requests are distrusted. Here are example requests:

- Login request. The child sends username and password. Only if the details
are correct does the privileged parent launch a new child with the appropriate
user credentials.

- chown() request. The child may request a recently uploaded file gets
chown'ed() to root for security purposes. The parent is careful to only allow
chown() to root, and only from files owned by the ftp user.

- Get privileged socket request. The ftp protocol says we are supposed to

emit data connections from port 20. This requires privilege. The privileged
parent process creates the privileged socket and passes it to child over

the socket.

4) This same privileged parent process makes use of capabilities and chroot(),
to run with the least privilege required. After login, depending on what
options have been selected, the privileged parent dynamically calculates what
privileges it requires. In some cases, this amounts to no privilege, and the
privileged parent just exits, leaving no part of vsftpd running with
privilege.

5) vsftpd-2.0.0 introduces SSL / TLS support using OpenSSL. ALL OpenSSL
protocol parsing is performed in a chroot() jail, running under an unprivileged
user. This means both pre-authenticated and post-authenticated OpenSSL protocol
parsing; it's actually quite hard to do, but vsftpd manages it in the name of
being secure. I'm unaware of any other FTP server which supports both SSL / TLS
and privilege separatation, and gets this right.

Comments on this document are welcomed.

Separation of responsibilities

Presenting vsftpd's secure design

vsftpd employs a secure design. The UNIX facilities outlined above are used
to good effect. The design decisions taken are as follows:

1) All parsing and acting on potentially malicious remote network data 1is

done in a process running as an unprivileged user. Furthermore, this process
runs in a chroot() jail, ensuring only the ftp files area is accessible.

2) Any privileged operations are handled in a privileged parent process. The
code for this privileged parent process is as small as possible for safety.

3) This same privileged parent process receives requests from the unprivileged
child over a socket. All requests are distrusted. Here are example requests:

- Login request. The child sends username and password. Only if the details
are correct does the privileged parent launch a new child with the appropriate
user credentials.

- chown() request. The child may request a recently uploaded file gets
chown'ed() to root for security purposes. The parent is careful to only allow
chown() to root, and only from files owned by the ftp user.

- Get privileged socket request. The ftp protocol says we are supposed to

emit data connections from port 20. This requires privilege. The privileged
parent process creates the privileged socket and passes it to child over

the socket.

4) This same privileged parent process makes use of capabilities and chroot(),
to run with the least privilege required. After login, depending on what
options have been selected, the privileged parent dynamically calculates what
privileges it requires. In some cases, this amounts to no privilege, and the
privileged parent just exits, leaving no part of vsftpd running with
privilege.

5) vsftpd-2.0.0 introduces SSL / TLS support using OpenSSL. ALL OpenSSL
protocol parsing is performed in a chroot() jail, running under an unprivileged
user. This means both pre-authenticated and post-authenticated OpenSSL protocol
parsing; it's actually quite hard to do, but vsftpd manages it in the name of
being secure. I'm unaware of any other FTP server which supports both SSL / TLS
and privilege separatation, and gets this right.

Comments on this document are welcomed.

Presenting vsftpd's secure design

vsftpd employs a secure design. The UNIX facilities outlined above are used
to good effect. The design decisions taken are as follows:

1) All parsing and acting on potentially malicious remote network data 1is

SeparatiOﬂ O]c reSpOﬂSibilitieS done in a process running as an unprivileged user. Furthermore, this process
runs in a chroot() jail, ensuring only the ftp files area is accessible.

2) Any privileged operations are handled in a privileged parent process. The
code for this privileged parent process is as small as possible for safety.

3) This same privileged parent process receives requests from the unprivileged
child over a socket. All requests are distrusted. Here are example requests:

- Login request. The child sends username and password. Only if the details
are correct does the privileged parent launch a new child with the appropriate
user credentials.

- chown() request. The child may request a recently uploaded file gets
chown'ed() to root for security purposes. The parent is careful to only allow
chown() to root, and only from files owned by the ftp user.

- Get privileged socket request. The ftp protocol says we are supposed to

emit data connections from port 20. This requires privilege. The privileged
parent process creates the privileged socket and passes it to child over

the socket.

4) This same privileged parent process makes use of capabilities and chroot(),
to run with the least privilege required. After login, depending on what
options have been selected, the privileged parent dynamically calculates what
privileges it requires. In some cases, this amounts to no privilege, and the
privileged parent just exits, leaving no part of vsftpd running with
privilege.

5) vsftpd-2.0.0 introduces SSL / TLS support using OpenSSL. ALL OpenSSL
protocol parsing is performed in a chroot() jail, running under an unprivileged
user. This means both pre-authenticated and post-authenticated OpenSSL protocol
parsing; it's actually quite hard to do, but vsftpd manages it in the name of
being secure. I'm unaware of any other FTP server which supports both SSL / TLS
and privilege separatation, and gets this right.

Comments on this document are welcomed.

Separation of responsibilities

Presenting vsftpd's secure design

vsftpd employs a secure design. The UNIX facilities outlined above are used
to good effect. The design decisions taken are as follows:

1) All parsing and acting on potentially malicious remote network data 1is
done in a process running as an unprivileged user. Furthermore, this process
runs in a chroot() jail, ensuring only the ftp files area is accessible.

2) Any privileged operations are handled in a privileged parent process. The

code for this privileged parent process is as small as possible for safety.

3) This same privileged parent process receives requests from the unprivileged
child over a socket. All requests are distrusted. Here are example requests:

- Login request. The child sends username and password. Only if the details
are correct does the privileged parent launch a new child with the appropriate
user credentials.

- chown() request. The child may request a recently uploaded file gets
chown'ed() to root for security purposes. The parent is careful to only allow
chown() to root, and only from files owned by the ftp user.

- Get privileged socket request. The ftp protocol says we are supposed to

emit data connections from port 20. This requires privilege. The privileged
parent process creates the privileged socket and passes it to child over

the socket.

4) This same privileged parent process makes use of capabilities and chroot(),
to run with the least privilege required. After login, depending on what
options have been selected, the privileged parent dynamically calculates what
privileges it requires. In some cases, this amounts to no privilege, and the
privileged parent just exits, leaving no part of vsftpd running with
privilege.

5) vsftpd-2.0.0 introduces SSL / TLS support using OpenSSL. ALL OpenSSL
protocol parsing is performed in a chroot() jail, running under an unprivileged
user. This means both pre-authenticated and post-authenticated OpenSSL protocol
parsing; it's actually quite hard to do, but vsftpd manages it in the name of
being secure. I'm unaware of any other FTP server which supports both SSL / TLS
and privilege separatation, and gets this right.

Comments on this document are welcomed.

Presenting vsftpd's secure design

vsftpd employs a secure design. The UNIX facilities outlined above are used
to good effect. The design decisions taken are as follows:

, e 1) All parsing and acting on potentially malicious remote network data 1is
Separathﬂ Of I’eSpOﬂSIbllltleS done in a process running as an unprivileged user. Furthermore, this process
runs in a chroot() jail, ensuring only the ftp files area is accessible.

TCB K|SS 2) Any privileged operations are handled in a privileged parent process. The

code for this privileged parent process is as small as possible for safety.

3) This same privileged parent process receives requests from the unprivileged
child over a socket. All requests are distrusted. Here are example requests:

- Login request. The child sends username and password. Only if the details
are correct does the privileged parent launch a new child with the appropriate
user credentials.

- chown() request. The child may request a recently uploaded file gets
chown'ed() to root for security purposes. The parent is careful to only allow
chown() to root, and only from files owned by the ftp user.

- Get privileged socket request. The ftp protocol says we are supposed to

emit data connections from port 20. This requires privilege. The privileged
parent process creates the privileged socket and passes it to child over

the socket.

4) This same privileged parent process makes use of capabilities and chroot(),
to run with the least privilege required. After login, depending on what
options have been selected, the privileged parent dynamically calculates what
privileges it requires. In some cases, this amounts to no privilege, and the
privileged parent just exits, leaving no part of vsftpd running with
privilege.

5) vsftpd-2.0.0 introduces SSL / TLS support using OpenSSL. ALL OpenSSL
protocol parsing is performed in a chroot() jail, running under an unprivileged
user. This means both pre-authenticated and post-authenticated OpenSSL protocol
parsing; it's actually quite hard to do, but vsftpd manages it in the name of
being secure. I'm unaware of any other FTP server which supports both SSL / TLS
and privilege separatation, and gets this right.

Comments on this document are welcomed.

Presenting vsftpd's secure design

vsftpd employs a secure design. The UNIX facilities outlined above are used
to good effect. The design decisions taken are as follows:

1) All parsing and acting on potentially malicious remote network data 1is

SeparatiOﬂ O]c reSpOﬂSibilitieS done in a process running as an unprivileged user. Furthermore, this process
runs in a chroot() jail, ensuring only the ftp files area is accessible.

TCB K|SS 2) Any privileged operations are handled in a privileged parent process. The
- code for this privileged parent process is as small as possible for safety.

3) This same privileged parent process receives requests from the unprivileged
child over a socket. All requests are distrusted. Here are example requests:

- Login request. The child sends username and password. Only if the details
are correct does the privileged parent launch a new child with the appropriate
user credentials.

- chown() request. The child may request a recently uploaded file gets
chown'ed() to root for security purposes. The parent is careful to only allow
chown() to root, and only from files owned by the ftp user.

- Get privileged socket request. The ftp protocol says we are supposed to

emit data connections from port 20. This requires privilege. The privileged
parent process creates the privileged socket and passes it to child over

the socket.

4) This same privileged parent process makes use of capabilities and chroot(),
to run with the least privilege required. After login, depending on what
options have been selected, the privileged parent dynamically calculates what
privileges it requires. In some cases, this amounts to no privilege, and the
privileged parent just exits, leaving no part of vsftpd running with
privilege.

5) vsftpd-2.0.0 introduces SSL / TLS support using OpenSSL. ALL OpenSSL
protocol parsing is performed in a chroot() jail, running under an unprivileged
user. This means both pre-authenticated and post-authenticated OpenSSL protocol
parsing; it's actually quite hard to do, but vsftpd manages it in the name of
being secure. I'm unaware of any other FTP server which supports both SSL / TLS
and privilege separatation, and gets this right.

Comments on this document are welcomed.

Separation of responsibilities

1C

3: KISS

Presenting vsftpd's secure design

vsftpd employs a secure design. The UNIX facilities outlined above are used
to good effect. The design decisions taken are as follows:

1) All parsing and acting on potentially malicious remote network data 1is
done in a process running as an unprivileged user. Furthermore, this process
runs in a chroot() jail, ensuring only the ftp files area is accessible.

2) Any privileged operations are handled in a privileged parent process. The
code for this privileged parent process is as small as possible for safety.

3) This same privileged parent process receives requests from the unprivileged

child over a socket. All requests are distggsted. Here are example requests:

- AN ~ -~ = S ~. . R
S = Do OF PR RSN L R T i W e LS o Al T T Bt WL e I 20 R BT o LU 2 Al T, iRl P R S AT N S T S W T A 825 580

are correct does the privileged parent launch a new child with the appropriate
user credentials.

- chown() request. The child may request a recently uploaded file gets
chown'ed() to root for security purposes. The parent is careful to only allow
chown() to root, and only from files owned by the ftp user.

- Get privileged socket request. The ftp protocol says we are supposed to

emit data connections from port 20. This requires privilege. The privileged
parent process creates the privileged socket and passes it to child over

the socket.

4) This same privileged parent process makes use of capabilities and chroot(),
to run with the least privilege required. After login, depending on what
options have been selected, the privileged parent dynamically calculates what
privileges it requires. In some cases, this amounts to no privilege, and the
privileged parent just exits, leaving no part of vsftpd running with
privilege.

5) vsftpd-2.0.0 introduces SSL / TLS support using OpenSSL. ALL OpenSSL
protocol parsing is performed in a chroot() jail, running under an unprivileged
user. This means both pre-authenticated and post-authenticated OpenSSL protocol
parsing; it's actually quite hard to do, but vsftpd manages it in the name of
being secure. I'm unaware of any other FTP server which supports both SSL / TLS
and privilege separatation, and gets this right.

Comments on this document are welcomed.

Separation of responsibilities

1C

TCB: KISS

3: Privilege separation

Presenting vsftpd's secure design

vsftpd employs a secure design. The UNIX facilities outlined above are used
to good effect. The design decisions taken are as follows:

1) All parsing and acting on potentially malicious remote network data 1is
done in a process running as an unprivileged user. Furthermore, this process
runs in a chroot() jail, ensuring only the ftp files area is accessible.

2) Any privileged operations are handled in a privileged parent process. The
code for this privileged parent process is as small as possible for safety.

3) This same privileged parent process receives requests from the unprivileged

child over a socket. All requests are distggsted. Here are example requests:

- AN ~ -~ = S ~. . R
ST = U Or PRSPV X T i W e LS o Al T T Bt WL e I 20 R BT o LU 2 Al T, iRl P R S AT N S T S W T A 825 580

o & N N A -) -w - W - - -8 - - s LA M) - it ® - y v

are correct does the privileged parent launch a new child with the appropriate
user credentials.

- chown() request. The child may request a recently uploaded file gets
chown'ed() to root for security purposes. The parent is careful to only allow
chown() to root, and only from files owned by the ftp user.

- Get privileged socket request. The ftp protocol says we are supposed to

emit data connections from port 20. This requires privilege. The privileged
parent process creates the privileged socket and passes it to child over

the socket.

4) This same privileged parent process makes use of capabilities and chroot(),
to run with the least privilege required. After login, depending on what
options have been selected, the privileged parent dynamically calculates what
privileges it requires. In some cases, this amounts to no privilege, and the
privileged parent just exits, leaving no part of vsftpd running with
privilege.

5) vsftpd-2.0.0 introduces SSL / TLS support using OpenSSL. ALL OpenSSL
protocol parsing is performed in a chroot() jail, running under an unprivileged
user. This means both pre-authenticated and post-authenticated OpenSSL protocol
parsing; it's actually quite hard to do, but vsftpd manages it in the name of
being secure. I'm unaware of any other FTP server which supports both SSL / TLS
and privilege separatation, and gets this right.

Comments on this document are welcomed.

Presenting vsftpd's secure design

vsftpd employs a secure design. The UNIX facilities outlined above are used
to good effect. The design decisions taken are as follows:

1) All parsing and acting on potentially malicious remote network data 1is

SeparatiOﬂ O]c I’eSpOﬂSibilitieS done in a process running as an unprivileged user. Furthermore, this process
runs in a chroot() jail, ensuring only the ftp files area is accessible.

TCB K|SS 2) Any privileged operations are handled in a privileged parent process. The
- code for this privileged parent process is as small as possible for safety.

, L : 3) This same privileged parent process receives requests from the unprivileged
TCB P”V”ege Separathn c})lild over a Es)ocket.gAllprequesE:)s are distrusted. gere are example rgquests?

- Login request. The child sends username and password. Only if the details
are correct does the privileged parent launch a new child with the appropriate
user credentials.

- chown() request. The child may request a recently uploaded file gets
chown'ed() to root for security purposes. The parent is careful to only allow
chown() to root, and only from files owned by the ftp user.

- Get privileged socket request. The ftp protocol says we are supposed to

emit data connections from port 20. This requires privilege. The privileged
parent process creates the privileged socket and passes it to child over

the socket.

4) This same privileged parent process makes use of capabilities and chroot(),
to run with the least privilege required. After login, depending on what
options have been selected, the privileged parent dynamically calculates what
privileges it requires. In some cases, this amounts to no privilege, and the
privileged parent just exits, leaving no part of vsftpd running with
privilege.

5) vsftpd-2.0.0 introduces SSL / TLS support using OpenSSL. ALL OpenSSL
protocol parsing is performed in a chroot() jail, running under an unprivileged
user. This means both pre-authenticated and post-authenticated OpenSSL protocol
parsing; it's actually quite hard to do, but vsftpd manages it in the name of
being secure. I'm unaware of any other FTP server which supports both SSL / TLS
and privilege separatation, and gets this right.

Comments on this document are welcomed.

Presenting vsftpd's secure design

vsftpd employs a secure design. The UNIX facilities outlined above are used
to good effect. The design decisions taken are as follows:

1) All parsing and acting on potentially malicious remote network data 1is

SeparatiOﬂ O]c I’eSpOﬂSibilitieS done in a process running as an unprivileged user. Furthermore, this process
runs in a chroot() jail, ensuring only the ftp files area is accessible.

TCB K|SS 2) Any privileged operations are handled in a privileged parent process. The
- code for this privileged parent process is as small as possible for safety.

, L : 3) This same privileged parent process receives requests from the unprivileged
TCB P”V”ege Separathn c})1i1d over a gocket.gAllprequesEs are distrusted. gere are example rgquests?

- Login request. The child sends username and password. Only if the details
are correct does the privileged parent launch a new child with the appropriate
user credentials.

- chown() request. The child may request a recently uploaded file gets
chown'ed() to root for security purposes. The parent is careful to only allow
chown() to root, and only from files owned by the ftp user.

- Get privileged socket request. The ftp protocol says we are supposed to

emit data connections from port 20. This requires privilege. The privileged
parent process creates the privileged socket and passes it to child over

the socket.

4) This same privileged parent process makes use of capabilities and chroot(),
to run with the least privilege required. After login, depending on what
options have been selected, the yrivilgfedapapent_dnamigallw_calculgtes‘whgy

orivileges it requires. In some cases, this amounts to no privilege, and

= o (oo

privileged parent just exits, leaving no part of vsftpd running with
privilege.

5) vsftpd-2.0.0 introduces SSL / TLS support using OpenSSL. ALL OpenSSL
protocol parsing is performed in a chroot() jail, running under an unprivileged
user. This means both pre-authenticated and post-authenticated OpenSSL protocol
parsing; it's actually quite hard to do, but vsftpd manages it in the name of
being secure. I'm unaware of any other FTP server which supports both SSL / TLS
and privilege separatation, and gets this right.

Comments on this document are welcomed.

Separation of responsibilities

TCB: KISS

TCB: Privilege separation

Principle of least privilege

Presenting vsftpd's secure design

vsftpd employs a secure design. The UNIX facilities outlined above are used
to good effect. The design decisions taken are as follows:

1) All parsing and acting on potentially malicious remote network data 1is
done in a process running as an unprivileged user. Furthermore, this process
runs in a chroot() jail, ensuring only the ftp files area is accessible.

2) Any privileged operations are handled in a privileged parent process. The
code for this privileged parent process is as small as possible for safety.

3) This same privileged parent process receives requests from the unprivileged
child over a socket. All requests are distrusted. Here are example requests:

- Login request. The child sends username and password. Only if the details
are correct does the privileged parent launch a new child with the appropriate
user credentials.

- chown() request. The child may request a recently uploaded file gets
chown'ed() to root for security purposes. The parent is careful to only allow
chown() to root, and only from files owned by the ftp user.

- Get privileged socket request. The ftp protocol says we are supposed to

emit data connections from port 20. This requires privilege. The privileged
parent process creates the privileged socket and passes it to child over

the socket.

4) This same privileged parent process makes use of capabilities and chroot(),
to run with the least privilege required. After login, depending on what
options have been selected, the yrivilgfedapapent_dnamigallw_calculgtes‘whgy

orivileges it requires. In some cases, this amounts to no privilege, and

= o (oo

privileged parent just exits, leaving no part of vsftpd running with

privilege.

5) vsftpd-2.0.0 introduces SSL / TLS support using OpenSSL. ALL OpenSSL
protocol parsing is performed in a chroot() jail, running under an unprivileged
user. This means both pre-authenticated and post-authenticated OpenSSL protocol
parsing; it's actually quite hard to do, but vsftpd manages it in the name of
being secure. I'm unaware of any other FTP server which supports both SSL / TLS
and privilege separatation, and gets this right.

Comments on this document are welcomed.

Presenting vsftpd's secure design

vsftpd employs a secure design. The UNIX facilities outlined above are used
to good effect. The design decisions taken are as follows:

1) All parsing and acting on potentially malicious remote network data 1is

SeparatiOﬂ O]c I’eSpOﬂSibilitieS done in a process running as an unprivileged user. Furthermore, this process
runs in a chroot() jail, ensuring only the ftp files area is accessible.

TCB K|SS 2) Any privileged operations are handled in a privileged parent process. The
- code for this privileged parent process is as small as possible for safety.

, L : 3) This same privileged parent process receives requests from the unprivileged
TCB P”V”ege Separathn c})lild over a Es)ocket.gAllprequesE:)s are distrusted. gere are example rgquests?

- Login request. The child sends username and password. Only if the details
are correct does the privileged parent launch a new child with the appropriate
user credentials.

- chown() request. The child may request a recently uploaded file gets
chown'ed() to root for security purposes. The parent is careful to only allow
chown() to root, and only from files owned by the ftp user.

- Get privileged socket request. The ftp protocol says we are supposed to

emit data connections from port 20. This requires privilege. The privileged
parent process creates the privileged socket and passes it to child over

the socket.

4) This same privileged parent process makes use of capabilities and chroot(),
to run with the least privilege required. After login, depending on what
: ' T options have been selected, the privileged parent dynamically calculates what
PFlﬂClple Of |eaSt prl\/llege privileges it requires. In some cases, this amounts to no privilege, and the
privileged parent just exits, leaving no part of vsftpd running with
privilege.

5) vsftpd-2.0.0 introduces SSL / TLS support using OpenSSL. ALL OpenSSL
protocol parsing is performed in a chroot() jail, running under an unprivileged
user. This means both pre-authenticated and post-authenticated OpenSSL protocol
parsing; it's actually quite hard to do, but vsftpd manages it in the name of
being secure. I'm unaware of any other FTP server which supports both SSL / TLS
and privilege separatation, and gets this right.

Comments on this document are welcomed.

Presenting vsftpd's secure design

vsftpd employs a secure design. The UNIX facilities outlined above are used
to good effect. The design decisions taken are as follows:

1) All parsing and acting on potentially malicious remote network data 1is

SeparatiOﬂ O]c I’eSpOﬂSibilitieS done in a process running as an unprivileged user. Furthermore, this process
runs in a chroot() jail, ensuring only the ftp files area is accessible.

TCB K|SS 2) Any privileged operations are handled in a privileged parent process. The
- code for this privileged parent process is as small as possible for safety.

, . : 3) This same privileged parent process receives requests from the unprivileged
TCB P”V”ege Separathn C})lild over a gocket.gAllprequesEs are distrusted. gere are example rgquests?

- Login request. The child sends username and password. Only if the details
are correct does the privileged parent launch a new child with the appropriate
user credentials.

- chown() request. The child may request a recently uploaded file gets
chown'ed() to root for security purposes. The parent is careful to only allow
chown() to root, and only from files owned by the ftp user.

- Get privileged socket request. The ftp protocol says we are supposed to

emit data connections from port 20. This requires privilege. The privileged
parent process creates the privileged socket and passes it to child over

the socket.

4) This same privileged parent process makes use of capabilities and chroot(),
to run with the least privilege required. After login, depending on what
' ' '/ options have been selected, the privileged parent dynamically calculates what
PFlﬂClple Of |eaSt pl’lVll@g@ privileges it requires. In some cases, this amounts to no privilege, and the
privileged parent just exits, leaving no part of vsftpd running with
privilege.

5) vsftpd-2.0.0 introduces SSL / TLS support using OpenSSL. ALL OpenSSL
protocol parsing is performed in a chroot() jail, running under an unprivileged
user. This means both pre-authenticated and post-authenticated OpenSSL protocol
parsing; it's actually quite hard to do, but vsftpd manages it in the name of
being secure. I'm unaware of any other FTP server which supports both SSL / TLS
and privilege separatation, and gets this right.

Comments on this document are welcomed.

Presenting vsftpd's secure design

vsftpd employs a secure design. The UNIX facilities outlined above are used
to good effect. The design decisions taken are as follows:

1) All parsing and acting on potentially malicious remote network data 1is

SeparatiOﬂ O]c I’eSpOﬂSibilitieS done in a process running as an unprivileged user. Furthermore, this process
runs in a chroot() jail, ensuring only the ftp files area is accessible.

TCB K|SS 2) Any privileged operations are handled in a privileged parent process. The
- code for this privileged parent process is as small as possible for safety.

, . : 3) This same privileged parent process receives requests from the unprivileged
TCB P”V”ege Separathn C})lild over a gocket.gAllprequesEs are distrusted. gere are example rgquests?

- Login request. The child sends username and password. Only if the details
are correct does the privileged parent launch a new child with the appropriate
user credentials.

- chown() request. The child may request a recently uploaded file gets
chown'ed() to root for security purposes. The parent is careful to only allow
chown() to root, and only from files owned by the ftp user.

- Get privileged socket request. The ftp protocol says we are supposed to

emit data connections from port 20. This requires privilege. The privileged
parent process creates the privileged socket and passes it to child over

the socket.

4) This same privileged parent process makes use of capabilities and chroot(),
to run with the least privilege required. After login, depending on what
' ' '/ options have been selected, the privileged parent dynamically calculates what
PFlﬂClple Of |eaSt pl’lVll@g@ privileges it requires. In some cases, this amounts to no privilege, and the
privileged parent just exits, leaving no part of vsftpd running with
privilege.

5) vsftpd-2.0.0 introduces SSL / TLS support using OpenSSL. ALL OpenSSL
protocol parsing is performed in a chroot() jail, running under an unprivileged
user. This means both pre-authenticated and post-authenticated OpenSSL protocol
parsing; it's actually quite hard to do, but vsftpd manages it in the name of
being secure. I'm unaware of any other FTP server which supports both SSL / TLS
and privilege separatation, and gets this right.

Kerkhoff's principle!

CHROMIUM ARCHITECTURE

Sandbox

Rendering Engine:

, Interprets and executes web content
Rendering

Engine Outputs rendered bitmaps

The website is the “untrusted code”

Goal: Enforce a narrow
Google interface between the two

HTML, JS, ... Rendered Bitmap

Browser Kernel

Browser Kernel:
Stores data (cookies, history, clipboard)

Performs all network operations

CHROMIUM'S SANDBOX

Sandbox Makes extensive use of the underlying
OS’s primitives

Rendering

Engine 1. Restricted security token

The OS then provides complete mediation
on access to “securable objects”

(Security token set s.t. it fails almost always)

Google 2. Separate desktop

HTML, JS, ...

Avoid Windows API’s lax security
checks

Rendered Bitmap

Browser Kernel

3. Windows Job Object

Can’t fork processes; can’t access clipboard

CHROMIUM'S BROWSER KERNEL INTERFACE

Sandbox Goal: Do not leak the ability to read

or write the user’s file system
Rendering

Engine 1. Restrict rendering
Rendering engine doesn’t get a window handle

Instead, draws to an off-screen bitmap

Browser kernel copies this bitmap to the screen

2. Network & 1/0

HTML, JS, ...

GOUS[C

Rendering engine requests uploads,

Rendered Bitma
® downloads, and file access thru BKI

Browser Kernel

3. Restrict user input

Rendering engine doesn’t get user input directly

Instead, browser kernel delivers it via BKI

