
PUBLIC KEY 
CRYPTO

CMSC 414
MAR 27 2018

RECAP: SYMMETRIC KEY CRYPTO

E

m

K

c

Deterministic ⟹ use IVs  
Fixed block size ⟹ use encryption “modes”

Block ciphers
D

c

K

m

K
c, t

K

CONFIDENTIALITY

Send (message, tag) pairs  
Verify that they match

Message Authentication Codes (MACs)
INTEGRITY

Sgn

m

K

t

Vfy

m

K

Yes/No

t

RECAP: SYMMETRIC KEY CRYPTO

E

m

K

c

Deterministic ⟹ use IVs  
Fixed block size ⟹ use encryption “modes”

Block ciphers
D

c

K

m

K
c, t

K

CONFIDENTIALITY

Send (message, tag) pairs  
Verify that they match

Message Authentication Codes (MACs)
INTEGRITY

Sgn

m

K

t

Vfy

m

K

Yes/No

t

Today:  
How do we establish K?

How do we know with whom  
we are communicating?

DIFFIE HELLMAN KEY ESTABLISHMENT
BLACKBOX #4:

HIGH-LEVEL REVIEW OF MODULAR ARITHMETIC
x mod N

HIGH-LEVEL REVIEW OF MODULAR ARITHMETIC
x mod N

g is a generator of mod N if  
{1, 2, …, N-1} = {g0 mod N, g1 mod N, …, gN-2 mod N}

HIGH-LEVEL REVIEW OF MODULAR ARITHMETIC
x mod N

g is a generator of mod N if  
{1, 2, …, N-1} = {g0 mod N, g1 mod N, …, gN-2 mod N}

N=5, g=3  
30 mod 5 = 1 31 mod 5 = 3 32 mod 5 = 4 33 mod 5 = 2

HIGH-LEVEL REVIEW OF MODULAR ARITHMETIC
x mod N

Given x and g, it is efficient to compute  
gx mod N

g is a generator of mod N if  
{1, 2, …, N-1} = {g0 mod N, g1 mod N, …, gN-2 mod N}

N=5, g=3  
30 mod 5 = 1 31 mod 5 = 3 32 mod 5 = 4 33 mod 5 = 2

HIGH-LEVEL REVIEW OF MODULAR ARITHMETIC
x mod N

Given x and g, it is efficient to compute  
gx mod N

Given g and gx, it is efficient to compute x  
(simply take logg gx)

g is a generator of mod N if  
{1, 2, …, N-1} = {g0 mod N, g1 mod N, …, gN-2 mod N}

N=5, g=3  
30 mod 5 = 1 31 mod 5 = 3 32 mod 5 = 4 33 mod 5 = 2

HIGH-LEVEL REVIEW OF MODULAR ARITHMETIC
x mod N

Given x and g, it is efficient to compute  
gx mod N

Given g and gx, it is efficient to compute x  
(simply take logg gx)

Given g and gx mod N it is infeasible to compute x  
Discrete log problem

g is a generator of mod N if  
{1, 2, …, N-1} = {g0 mod N, g1 mod N, …, gN-2 mod N}

N=5, g=3  
30 mod 5 = 1 31 mod 5 = 3 32 mod 5 = 4 33 mod 5 = 2

DIFFIE-HELLMAN KEY EXCHANGE

DIFFIE-HELLMAN KEY EXCHANGE

Public knowledge: g and N

DIFFIE-HELLMAN KEY EXCHANGE

Public knowledge: g and N

g N

g N

g N

DIFFIE-HELLMAN KEY EXCHANGE

Public knowledge: g and N

Pick random a

g N

g N

g N

DIFFIE-HELLMAN KEY EXCHANGE

Public knowledge: g and N

Pick random a

g N

g N

g Na

DIFFIE-HELLMAN KEY EXCHANGE

Public knowledge: g and N

Pick random a

g N

g N

g N

ga mod N

a

DIFFIE-HELLMAN KEY EXCHANGE

Public knowledge: g and N

Pick random a

g N

g N

g N

ga mod N

a
ga mod N

ga mod N

DIFFIE-HELLMAN KEY EXCHANGE

Public knowledge: g and N

Pick random a

g N

g N

g N

ga mod N

a
ga mod N

ga mod N

Pick random b

b

DIFFIE-HELLMAN KEY EXCHANGE

Public knowledge: g and N

Pick random a

g N

g N

g N

ga mod N

a
ga mod N

ga mod N

Pick random bgb mod N

b

DIFFIE-HELLMAN KEY EXCHANGE

Public knowledge: g and N

Pick random a

g N

g N

g N

ga mod N

a
ga mod N

ga mod N

Pick random bgb mod N

b
gb mod N

gb mod N

DIFFIE-HELLMAN KEY EXCHANGE

Public knowledge: g and N

Pick random a

g N

g N

g N

ga mod N

a
ga mod N

ga mod N

Pick random bgb mod N

b
gb mod N

gb mod N

Compute (gb mod N)a = gab mod N Compute (ga mod N)b = gab mod N

DIFFIE-HELLMAN KEY EXCHANGE

Public knowledge: g and N

Pick random a

g N

g N

g N

ga mod N

a
ga mod N

ga mod N

Pick random bgb mod N

b
gb mod N

gb mod N

Compute (gb mod N)a = gab mod N Compute (ga mod N)b = gab mod N

Shared secret: This is the key

DIFFIE-HELLMAN KEY EXCHANGE
g N
ga mod N
gb mod N

gab mod N

ga mod N gb mod N* = ga+b mod N
Note that just multiplying ga and gb won’t suffice:

Key property:  
An eavesdropper cannot infer the shared secret (gab).

But what about active intermediaries?

DIFFIE-HELLMAN KEY EXCHANGE
g N
ga mod N
gb mod N

Given g and gx mod N it is infeasible to compute x  
Discrete log problem

gab mod N

ga mod N gb mod N* = ga+b mod N
Note that just multiplying ga and gb won’t suffice:

Key property:  
An eavesdropper cannot infer the shared secret (gab).

But what about active intermediaries?

MAN-IN-THE-MIDDLE (MITM) ATTACKS

Pick random b

The attacker can interpose between the two communicating parties  
and insert, delete, and modify messages.

Pick random a Pick random x

thinks he is talking to

thinks he is talking to

MAN-IN-THE-MIDDLE (MITM) ATTACKS

ga mod N
Pick random b

The attacker can interpose between the two communicating parties  
and insert, delete, and modify messages.

Pick random a Pick random x

thinks he is talking to

thinks he is talking to

MAN-IN-THE-MIDDLE (MITM) ATTACKS

ga mod N
Pick random b

The attacker can interpose between the two communicating parties  
and insert, delete, and modify messages.

gx mod N
Pick random a Pick random x

thinks he is talking to

thinks he is talking to

MAN-IN-THE-MIDDLE (MITM) ATTACKS

ga mod N
Pick random b

gb mod N

The attacker can interpose between the two communicating parties  
and insert, delete, and modify messages.

gx mod N
Pick random a Pick random x

thinks he is talking to

thinks he is talking to

MAN-IN-THE-MIDDLE (MITM) ATTACKS

ga mod N
Pick random b

gb mod N

The attacker can interpose between the two communicating parties  
and insert, delete, and modify messages.

gx mod N
Pick random a Pick random x

thinks he is talking to

thinks he is talking to

gx mod N

MAN-IN-THE-MIDDLE (MITM) ATTACKS

ga mod N
Pick random b

gb mod N

The attacker can interpose between the two communicating parties  
and insert, delete, and modify messages.

gx mod N
Pick random a Pick random x

thinks he is talking to

thinks he is talking to

gx mod N

gbx mod N

thinks this is his  
 shared key with

gax mod N

thinks this is his  
 shared key with

MAN-IN-THE-MIDDLE (MITM) ATTACKS

ga mod N
Pick random b

gb mod N

The attacker can interpose between the two communicating parties  
and insert, delete, and modify messages.

gx mod N
Pick random a Pick random x

thinks he is talking to

thinks he is talking to

gx mod N

gbx mod N

thinks this is his  
 shared key with

gax mod N

thinks this is his  
 shared key with

The attacker can now eavesdrop on the conversation.  
Key property: Diffie-Hellman is not resilient to a MITM attack

PUBLIC KEY CRYPTOGRAPHY
BLACKBOX #5:

TO FIX THIS PROBLEM WE NEED…

Shortcomings of symmetric key

K K

One-to-many: 
O(N) key

exchanges

All-to-all:  
O(N2) key
exchanges

Establishing a pairwise key
requires a key exchange, 
which requires both parties  
to be online

File downloads Email / chat

Issue #1: Requires pairwise key exchanges

Shortcomings of symmetric key

K K

One-to-many: 
O(N) key

exchanges

Establishing a pairwise key
requires a key exchange, 
which requires both parties  
to be online

File downloads

Issue #2: Parties must be online

Blue user uploads a
document, then goes  
offline (e.g., forever)

Later, a yellow user wants
to get a copy; how can
it know the copy is really
from the blue user?

Shortcomings of symmetric key

K K

Establishing a pairwise key
requires a key exchange, 
which requires both parties  
to be online

Issue #3: How do you know to whom you’re talking?

Diffie-Hellman is resilient to eavesdropping, 
but not tampering

K K K1 K1 K2K2

vs

A protocol that solves this with trust
Trent: A trusted third party

Alice Bob

A protocol that solves this with trust
Trent: A trusted third party

Alice Bob

KAT

KAT KBT

KBT

1. Everybody establishes a pairwise key with Trent  
Good: O(N) key exchanges

A protocol that solves this with trust
Trent: A trusted third party

Alice Bob

KAT

KAT KBT

KBT

1. Everybody establishes a pairwise key with Trent  
Good: O(N) key exchanges

2. Trent validates each user’s identity; includes in message
Good: Authenticated communication

A protocol that solves this with trust
Trent: A trusted third party

Alice Bob

KAT

KAT KBT

KBT

1. Everybody establishes a pairwise key with Trent  
Good: O(N) key exchanges

2. Trent validates each user’s identity; includes in message
Good: Authenticated communication

E(KAT, msg || to:Bob)

A protocol that solves this with trust
Trent: A trusted third party

Alice Bob

KAT

KAT KBT

KBT

1. Everybody establishes a pairwise key with Trent  
Good: O(N) key exchanges

2. Trent validates each user’s identity; includes in message
Good: Authenticated communication

E(KAT, msg || to:Bob) E(KBT, msg || from:Alice)

A protocol that solves this with trust
Trent: A trusted third party

Alice Bob

KAT

KAT KBT

KBT

1. Everybody establishes a pairwise key with Trent  
Good: O(N) key exchanges

2. Trent validates each user’s identity; includes in message
Good: Authenticated communication

E(KAT, msg || to:Bob) E(KBT, msg || from:Alice)

Bad: All messages get sent through Trent

What are we trusting Trent not to do?

Alice Bob

KAT

KAT KBT

KBT

E(KAT, msg || to:Bob) E(KBT, msg || from:Alice)

Just as “secure” meant nothing without an attack model,
“trusted” means nothing without a trust model

What are we trusting Trent not to do?

Alice Bob

KAT

KAT KBT

KBT

E(KAT, msg || to:Bob) E(KBT, msg || from:Alice)

Just as “secure” meant nothing without an attack model,
“trusted” means nothing without a trust model

(Oh wow, “msg”!)

1. Do not read messages

What are we trusting Trent not to do?

Alice Bob

KAT

KAT KBT

KBT

E(KAT, msg || to:Bob) E(KBT, msg’ || from:Alice)

Just as “secure” meant nothing without an attack model,
“trusted” means nothing without a trust model

1. Do not read messages
2. Do not alter messages

What are we trusting Trent not to do?

Alice Bob

KAT

KAT KBT

KBT

E(KBT, msg’ || from:Alice)

Just as “secure” meant nothing without an attack model,
“trusted” means nothing without a trust model

1. Do not read messages
2. Do not alter messages
3. Do not forge messages

…nothing…

What are we trusting Trent not to do?

Alice Bob

KAT

KAT KBT

KBT

Just as “secure” meant nothing without an attack model,
“trusted” means nothing without a trust model

1. Do not read messages
2. Do not alter messages
3. Do not forge messages

4. Do not go offline

E(KAT, msg || to:Bob) ….

Public key encryption

Key generation G
• Inputs

• Source of randomness
• Maximum key length L

• Outputs: a key pair
• PK = public key
• SK = secret key

A public key encryption scheme comprises three algorithms

This is a randomized algorithm
(nondeterministic output)

PK and SK are intrinsically bound together:
for a given PK, there is a single corresponding SK

Difficult to infer SK from PK
Only one person should know SK;

PK should be public to all

Example: RSA’s public keys are a pair: (exponent, modulus)

Public key encryption

Encryption E(PK, msg)
• Inputs

• Public key PK
• Message msg of  

fixed size
• Outputs: a cipher text c 

same size as msg

A public key encryption scheme comprises three algorithms

This is a randomized algorithm
(vanilla RSA is deterministic;

in practice, RSA-PKCS is used  
instead, which adds a nonce  

to the message)

Anyone who knows Alice’s PK can encrypt a message to her…

PK a.k.a. “Encryption key”

Public key encryption

Decryption D(SK, c)
• Inputs

• Secret key SK
• Cipher text c

• Outputs: original msg

A public key encryption scheme comprises three algorithms

This is a deterministic algorithm
Should always return the 

original message

…but only Alice can decrypt that message

Public key encryption

Decryption D(SK, c)
→ original msg

A public key encryption scheme comprises three algorithms

Key generation G
→ PK = public key
→ SK = secret key

Encryption E(PK, m)
→ cipher text c

Correctness
D(SK, E(PK, m)) = m

Security
E(PK, m) should appear random
(small change to (PK,m) leads  

to large changes to c)

E() should approximate a one-way  
trapdoor function: cannot invert

without access to SK

Protocols with public key encryption

Symmetric key

All-to-all:  
O(N2) key
exchanges

Email / chat

Goal: deliver a confidential message

Protocols with public key encryption

Symmetric key Generate public/private
key pair (PK,SK)

Annouce PK publicly
(on website, in newspaper, …)

All-to-all:  
O(N2) key
exchanges

Email / chat

Goal: deliver a confidential message

Protocols with public key encryption

Symmetric key Generate public/private
key pair (PK,SK)

Annouce PK publicly
(on website, in newspaper, …)

Obtain PK

Send c = E(PK, msg)

All-to-all:  
O(N2) key
exchanges

Email / chat

Goal: deliver a confidential message

Protocols with public key encryption

Symmetric key Generate public/private
key pair (PK,SK)

Annouce PK publicly
(on website, in newspaper, …)

Decrypt D(SK, c) = msg

Obtain PK

Send c = E(PK, msg)

All-to-all:  
O(N2) key
exchanges

Email / chat

Goal: deliver a confidential message

Protocols with public key encryption

Symmetric key Generate public/private
key pair (PK,SK)

Annouce PK publicly
(on website, in newspaper, …)

Decrypt D(SK, c) = msg

Obtain PK

Send c = E(PK, msg)

All-to-all:  
O(N2) key
exchanges

Email / chat

O(N) keys in total

Goal: deliver a confidential message

Overcoming fixed message sizes

Encryption E(PK, msg)
• Inputs

• Public key PK
• Message msg of  

fixed size
• Outputs: a cipher text c 

same size as msg

Like block ciphers,
but there are not  
“modes” of public
key encryption

Overcoming fixed message sizes

Encryption E(PK, msg)
• Inputs

• Public key PK
• Message msg of  

fixed size
• Outputs: a cipher text c 

same size as msg

Like block ciphers,
but there are not  
“modes” of public
key encryption

Public key operations are slooooow!

Overcoming fixed message sizes

Encryption E(PK, msg)
• Inputs

• Public key PK
• Message msg of  

fixed size
• Outputs: a cipher text c 

same size as msg

Like block ciphers,
but there are not  
“modes” of public
key encryption

Public key operations are slooooow!
Symmetric key operations are fast

Hybrid encryption

Hybrid encryption
Generate public/private key
pair (PK,SK); publicize PK

Hybrid encryption
Generate public/private key
pair (PK,SK); publicize PK

Compute cK = E(PK, K)

Obtain PK
Generate symmetric key K

Compute cmsg = e(K, msg)

Hybrid encryption
Generate public/private key
pair (PK,SK); publicize PK

Compute cK = E(PK, K)

Obtain PK
Generate symmetric key K

Compute cmsg = e(K, msg)Symm key

Public key

Hybrid encryption
Generate public/private key
pair (PK,SK); publicize PK

Compute cK = E(PK, K)

Obtain PK
Generate symmetric key K

Compute cmsg = e(K, msg)
Now throw away K

Symm key

Public key

Hybrid encryption
Generate public/private key
pair (PK,SK); publicize PK

Compute cK = E(PK, K)

Obtain PK
Generate symmetric key K

Compute cmsg = e(K, msg)

Send cK || cmsg

Now throw away K

Symm key

Public key

Hybrid encryption
Generate public/private key
pair (PK,SK); publicize PK

Decrypt D(SK, cK) = K
Decrypt d(K, cmsg) = msg

Compute cK = E(PK, K)

Obtain PK
Generate symmetric key K

Compute cmsg = e(K, msg)

Send cK || cmsg

Now throw away K

Symm key

Public key

Hybrid encryption
Generate public/private key
pair (PK,SK); publicize PK

Decrypt D(SK, cK) = K
Decrypt d(K, cmsg) = msg

Compute cK = E(PK, K)

Obtain PK
Generate symmetric key K

Compute cmsg = e(K, msg)

Send cK || cmsg

Now throw away K

Symm key

Public key

Symm key

Public key

Hybrid encryption

Compute cK = E(PK, K)

Obtain PK
Generate symmetric key K

Compute cmsg = e(K, msg)

Send cK || cmsg

The easy key distribution of public key

The speed and arbitrary message length of symmetric key

Protocols with public key cryptography

One-to-many: 
O(N) key

exchanges

File downloads

Symmetric key

Goal: determine from whom a message came

Ideally, a user (blue) could post a
message (e.g., sensitive documents  

or a kernel update), and then  
go offline

And downloaders (yellow) could
subsequently infer the message’s
authenticity without having to have

already established a pairwise  
key with the publisher

Digital signatures

Signing function Sgn(SK, m)
• Inputs

• Secret key SK
• Fixed-length message

• Outputs: a signature s

A digital signature scheme comprises two algorithms

Digital signatures

Signing function Sgn(SK, m)
• Inputs

• Secret key SK
• Fixed-length message

• Outputs: a signature s

A digital signature scheme comprises two algorithms

This is a randomized algorithm
(nondeterministic output)

Digital signatures

Signing function Sgn(SK, m)
• Inputs

• Secret key SK
• Fixed-length message

• Outputs: a signature s

A digital signature scheme comprises two algorithms

This is a randomized algorithm
(nondeterministic output)

SK a.k.a. “Signing key”

Digital signatures

Signing function Sgn(SK, m)
• Inputs

• Secret key SK
• Fixed-length message

• Outputs: a signature s

A digital signature scheme comprises two algorithms

This is a randomized algorithm
(nondeterministic output)

SK a.k.a. “Signing key”
Only one person can sign with 

a given (PK,SK) pair

Digital signatures

Signing function Sgn(SK, m)
• Inputs

• Secret key SK
• Fixed-length message

• Outputs: a signature s

A digital signature scheme comprises two algorithms

This is a randomized algorithm
(nondeterministic output)

SK a.k.a. “Signing key”

Verification function Vfy(PK, m, s)
• Inputs

• Public key PK
• Message and signature

• Outputs: Yes/No if valid (m,s)

Only one person can sign with 
a given (PK,SK) pair

Digital signatures

Signing function Sgn(SK, m)
• Inputs

• Secret key SK
• Fixed-length message

• Outputs: a signature s

A digital signature scheme comprises two algorithms

This is a randomized algorithm
(nondeterministic output)

SK a.k.a. “Signing key”

Verification function Vfy(PK, m, s)
• Inputs

• Public key PK
• Message and signature

• Outputs: Yes/No if valid (m,s)

Deterministic algorithm

Only one person can sign with 
a given (PK,SK) pair

Digital signatures

Signing function Sgn(SK, m)
• Inputs

• Secret key SK
• Fixed-length message

• Outputs: a signature s

A digital signature scheme comprises two algorithms

This is a randomized algorithm
(nondeterministic output)

SK a.k.a. “Signing key”

Verification function Vfy(PK, m, s)
• Inputs

• Public key PK
• Message and signature

• Outputs: Yes/No if valid (m,s)

Deterministic algorithm

Only one person can sign with 
a given (PK,SK) pair

Anyone with the PK  
can verify

Digital signatures

Signing Sgn(SK, m)
 → a signature s

A digital signature scheme comprises two algorithms

Correctness
Vfy(PK, m, Sgn(SK, m)) = Yes

Verification Vfy(PK, m, s)
→ Yes/No if valid (m,s)

Security
Same as with MACs: even after  
a chosen plaintext attack, the  

attacker cannot demonstrate an  
existential forgery

Protocols with digital signatures

One-to-many: 
O(N) key

exchanges

File downloads

Symmetric key Generate public/private
key pair (PK,SK)

Annouce PK publicly
(on website, in newspaper, …)

Goal: determine from whom a message came

Protocols with digital signatures

One-to-many: 
O(N) key

exchanges

File downloads

Symmetric key Generate public/private
key pair (PK,SK)

Annouce PK publicly
(on website, in newspaper, …)

Goal: determine from whom a message came

Compute sig = Sgn(SK, msg)

Protocols with digital signatures

One-to-many: 
O(N) key

exchanges

File downloads

Symmetric key Generate public/private
key pair (PK,SK)

Annouce PK publicly
(on website, in newspaper, …)

Goal: determine from whom a message came

Compute sig = Sgn(SK, msg)

Publish msg || sig

Protocols with digital signatures

One-to-many: 
O(N) key

exchanges

File downloads

Symmetric key Generate public/private
key pair (PK,SK)

Annouce PK publicly
(on website, in newspaper, …)

Goal: determine from whom a message came

Compute sig = Sgn(SK, msg)

Publish msg || sig
can now go offline!

Protocols with digital signatures

One-to-many: 
O(N) key

exchanges

File downloads

Symmetric key Generate public/private
key pair (PK,SK)

Annouce PK publicly
(on website, in newspaper, …)

Goal: determine from whom a message came

Compute sig = Sgn(SK, msg)

Publish msg || sig

Obtain PK, msg || sig
Vfy(PK, msg, sig)

can now go offline!

Digital signature properties

Digital signature properties

Authenticity Bob can prove that a message  
signed by Alice is truly from Alice
(even without a pairwise key)

Digital signature properties

Authenticity Bob can prove that a message  
signed by Alice is truly from Alice
(even without a pairwise key)

Integrity Bob can prove that no one has  
tampered with a signed message

Digital signature properties

Authenticity Bob can prove that a message  
signed by Alice is truly from Alice
(even without a pairwise key)

Integrity Bob can prove that no one has  
tampered with a signed message

Non-repudiation
Once Alice signs a message, she  
cannot subsequently claim she 
did not sign that message

Do handwritten signatures at the end of a
letter have these properties?

Authenticity Bob can prove that a message  
signed by Alice is truly from Alice
(even without a pairwise key)

Integrity Bob can prove that no one has  
tampered with a signed message

Non-repudiation
Once Alice signs a message, she  
cannot subsequently claim she 
did not sign that message

Do handwritten signatures at the end of a
letter have these properties?

Authenticity

Integrity Bob can prove that no one has  
tampered with a signed message

Non-repudiation
Once Alice signs a message, she  
cannot subsequently claim she 
did not sign that message

Would require unforgeable  
handwritten signatures. This is the  
one property they sort of get

Do handwritten signatures at the end of a
letter have these properties?

Authenticity

Integrity

Non-repudiation
Once Alice signs a message, she  
cannot subsequently claim she 
did not sign that message

Would require unforgeable  
handwritten signatures. This is the  
one property they sort of get

Would require having a signature  
that depended on each part in 
the body of the letter

Do handwritten signatures at the end of a
letter have these properties?

Authenticity

Integrity

Non-repudiation

Would require unforgeable  
handwritten signatures. This is the  
one property they sort of get

Would require having a signature  
that depended on each part in 
the body of the letter

Would require both of the above  
(unforgeable signature that 
depends on each part of letter)

