PUBLIC KEY CRYPTO

CMSC 414 MAR 27 2018

RECAP: SYMMETRIC KEY CRYPTO

CONFIDENTIALITY

Block ciphers

Deterministic \Rightarrow use IVs Fixed block size \Rightarrow use encryption "modes"

INTEGRITY

Message Authentication Codes (MACs)

Send (message, tag) pairs Verify that they match

RECAP: SYMMETRIC KEY CRYPTO

CONFIDENTIALITY

Block ciphers

Deterministic \Rightarrow use IVs Fixed block size \Rightarrow use encryption "modes"

INTEGRITY

Message Authentication Codes (MACs)

Send (message, tag) pairs Verify that they match

BLACKBOX #4: DIFFIE HELLMAN KEY ESTABLISHMENT

 $x \mod N$

 $x \mod N$

g is a generator of mod N if{1, 2, ..., N-1} = { $g^0 \mod N, g^1 \mod N, ..., g^{N-2} \mod N$ }

 $x \mod N$

g is a generator of mod N if{1, 2, ..., N-1} = { $g^0 \mod N, g^1 \mod N, ..., g^{N-2} \mod N$ }

N=5, g=33⁰ mod 5 = 1 3¹ mod 5 = 3 3² mod 5 = 4 3³ mod 5 = 2

 $x \mod N$

g is a generator of mod N if{1, 2, ..., N-1} = { $g^0 \mod N, g^1 \mod N, ..., g^{N-2} \mod N$ }

N=5, g=33⁰ mod 5 = 1 3¹ mod 5 = 3 3² mod 5 = 4 3³ mod 5 = 2

Given *x* and *g*, it is efficient to compute $g^x \mod N$

 $x \mod N$

g is a generator of mod N if{1, 2, ..., N-1} = { $g^0 \mod N, g^1 \mod N, ..., g^{N-2} \mod N$ }

N=5, g=33⁰ mod 5 = 1 3¹ mod 5 = 3 3² mod 5 = 4 3³ mod 5 = 2

Given *x* and *g*, it is efficient to compute $g^x \mod N$

Given g and g^x , it is efficient to compute x (simply take $\log_g g^x$)

 $x \mod N$

g is a generator of mod N if{1, 2, ..., N-1} = { $g^0 \mod N, g^1 \mod N, ..., g^{N-2} \mod N$ }

N=5, g=33⁰ mod 5 = 1 3¹ mod 5 = 3 3² mod 5 = 4 3³ mod 5 = 2

Given x and g, it is efficient to compute $g^x \mod N$

Given g and g^x , it is efficient to compute x (simply take $\log_g g^x$)

Given g and g^x mod N it is *infeasible* to compute x Discrete log problem

.

.

Public knowledge: g and N

.

Public knowledge: g and N

Public knowledge: g and N

Pick random a

Public knowledge: g and N

Pick random a

Public knowledge: g and N

Pick random a

 $g^a \mod N$

 $\sum_{g^a \mod N} g^a \mod N$

g N g^a mod N

Public knowledge: g and N

Pick random a

ag N

 $g^a \mod N$

 $\sum_{g^a \mod N} g^a \mod N$

g N b g^a mod N

Public knowledge: g and N

Pick random a

ag N

 $g^a \mod N$

Pick random b

DIFFIE-HELLMAN KEY EXCHANGE $\sum g N$ $g^a \mod N$ ag N g N b $g^a \mod N$ *Public knowledge: g and N* Pick random a $g^a \mod N$ Pick random b $g^b \mod N$

g N b g^a mod N

Public knowledge: g and N

g N g^a mod N g^b mod N

g^{ab} mod N

Note that just multiplying g^a and g^b won't suffice: $g^a \mod N * g^b \mod N = g^{a+b} \mod N$ Key property: An eavesdropper cannot infer the shared secret (g^{ab}). But what about active intermediaries?

g N g^a mod N g^b mod N

 $g^{ab} \mod N$

Given g and g^x mod N it is *infeasible* to compute x Discrete log problem

Note that just multiplying g^a and g^b won't suffice: $g^a \mod N * g^b \mod N = g^{a+b} \mod N$

Key property: An eavesdropper cannot infer the shared secret (g^{ab}). But what about active intermediaries?

The attacker can interpose between the two communicating parties and insert, delete, and modify messages.

Pick random a

Pick random **x**

Pick random b

The attacker can interpose between the two communicating parties and insert, delete, and modify messages.

The attacker can now eavesdrop on the conversation. Key property: Diffie-Hellman is *not* resilient to a MITM attack

TO FIX THIS PROBLEM WE NEED . . .

BLACKBOX #5: PUBLIC KEY CRYPTOGRAPHY

Shortcomings of symmetric key

Establishing a pairwise key requires a **key exchange**, which requires both parties to be *online*

Issue #1: Requires pairwise key exchanges

File downloads

Email / chat

One-to-many: O(N) key exchanges

All-to-all: O(N²) key exchanges

Shortcomings of symmetric key

Establishing a pairwise key requires a **key exchange**, which requires both parties to be *online*

Issue #2: Parties must be online

File downloads

One-to-many: O(N) key exchanges Blue user uploads a document, then goes offline (e.g., forever)

Later, a yellow user wants to get a copy; how can it know the copy is really from the blue user?

Issue #3: How do you know to whom you're talking?

Diffie-Hellman is resilient to *eavesdropping*, but *not tampering*

A protocol that solves this with trust

Trent: A trusted third party

Trent: A trusted third party

 Everybody establishes a pairwise key with Trent Good: O(N) key exchanges

Trent: A trusted third party

1. Everybody establishes a pairwise key with Trent **Good:** *O(N) key exchanges*

2. Trent validates each user's identity; includes in message **Good:** *Authenticated communication*

Trent: A *trusted* third party

1. Everybody establishes a pairwise key with Trent **Good:** *O(N) key exchanges*

2. Trent validates each user's identity; includes in message **Good:** *Authenticated communication*

Trent: A *trusted* third party

1. Everybody establishes a pairwise key with Trent **Good:** *O(N) key exchanges*

2. Trent validates each user's identity; includes in message **Good:** *Authenticated communication*

Trent: A *trusted* third party

1. Everybody establishes a pairwise key with Trent **Good:** *O(N) key exchanges*

2. Trent validates each user's identity; includes in message **Good:** *Authenticated communication*

Bad: All messages get sent through Trent

Do not *alter* messages
Do not *forge* messages

A public key encryption scheme comprises three algorithms

Key generation G

- Inputs
 - Source of randomness
 - Maximum key length L
- Outputs: a key pair
 - *PK* = **public key**
 - SK = secret key

This is a *randomized* algorithm (nondeterministic output)

Difficult to infer SK from PK Only one person should know SK; PK should be public to all

PK and SK are intrinsically bound together: for a given PK, there is a single *corresponding* SK

Example: RSA's public keys are a pair: (exponent, modulus)

A public key encryption scheme comprises three algorithms

Encryption E(PK, msg)

- Inputs
 - Public key PK
 - Message msg of fixed size
- Outputs: a cipher text c same size as msg

This is a *randomized* algorithm (vanilla RSA is deterministic; in practice, RSA-PKCS is used instead, which adds a nonce to the message)

PK a.k.a. "Encryption key"

Anyone who knows Alice's PK can encrypt a message to her...

A public key encryption scheme comprises three algorithms

Decryption D(SK, c)

- Inputs
 - Secret key SK
 - Cipher text c
- Outputs: original msg

This is a *deterministic* algorithm

Should always return the original message

...but only Alice can decrypt that message

A public key encryption scheme comprises three algorithms

Key generation G
$$\rightarrow PK =$$
 public key $\rightarrow SK =$ secret key

<u>Correctness</u>

D(SK, E(PK, m)) = m

Decryption **D(SK, c)**

→ original msg

Security

E(PK, m) should appear random (small change to (PK,m) leads to large changes to c)

E() should approximate a one-way trapdoor function: cannot invert without access to SK

Symmetric key

Email / chat

All-to-all: O(N²) key exchanges

Symmetric key

Email / chat

All-to-all: O(N²) key exchanges

Generate public/private key pair (PK,SK)

Annouce PK publicly (on website, in newspaper, ...)

Symmetric key

Email / chat

All-to-all: O(N²) key exchanges

Generate public/private key pair (PK,SK)

Annouce PK publicly (on website, in newspaper, ...)

Obtain PK

Send c = E(PK, msg)

Symmetric key

Email / chat

All-to-all: O(N²) key exchanges

Generate public/private key pair (PK,SK)

Annouce PK publicly (on website, in newspaper, ...)

Obtain PK

Send c = E(PK, msg)

Decrypt D(SK, c) = msg

Symmetric key

Email / chat

All-to-all: O(N²) key exchanges

Generate public/private key pair (PK,SK)

Annouce PK publicly (on website, in newspaper, ...)

Obtain PK

Send c = E(PK, msg)

Decrypt D(SK, c) = msg

O(N) keys in total

Overcoming fixed message sizes

Like block ciphers, but there are not "modes" of public key encryption

Overcoming fixed message sizes

Public key operations are *sloooow!*

Overcoming fixed message sizes

Public key operations are *slooooow!* Symmetric key operations are fast

Generate public/private key pair (PK,SK); publicize PK

Generate public/private key pair (PK,SK); publicize PK

Obtain PK

Generate symmetric key K

Compute $c_{msg} = e(K, msg)$

Compute $c_{K} = E(PK, K)$

Generate public/private key pair (PK,SK); publicize PK

Obtain PK

Generate symmetric key K

- Symm key Compute $c_{msg} = e(K, msg)$
- Public key Compute $c_{K} = E(PK, K)$

Generate public/private key pair (PK,SK); publicize PK

Obtain PK Generate *symmetric* key K

Compute $c_{msg} = e(K, msg)$ Symm key

Compute $c_{K} = E(PK, K)$ **Now throw away K** Public key

Generate public/private key pair (PK,SK); publicize PK

Obtain PK Generate *symmetric* key K

Compute $c_{msg} = e(K, msg)$ Symm key

Compute c_K = E(PK, K) *Now throw away K* Public key Send CK || Cmsg

Generate public/private key pair (PK,SK); publicize PK

Obtain PK Generate *symmetric* key K

Symm key Compute $C_{msg} = e(K, msg)$

Compute $c_{K} = E(PK, K)$ **Now throw away K** Public key

Send CK || Cmsg

Decrypt D(SK, c_K) = K Decrypt d(K, c_{msg}) = msg

Generate public/private key pair (PK,SK); publicize PK

Obtain PK Generate *symmetric* key K

Compute $c_{msg} = e(K, msg)$ Symm key

Compute c_K = E(PK, K) *Now throw away K* Public key

Send CK || Cmsg

Decrypt D(SK, c_K) = K Decrypt d(K, c_{msg}) = msg Public key Symm key

Obtain PK Generate *symmetric* key K Compute $c_{msg} = e(K, msg)$ Compute $c_{K} = E(PK, K)$ Send $c_{K} \parallel c_{msg}$

The easy key distribution of public key

The speed and arbitrary message length of symmetric key

Protocols with public key cryptography Goal: determine from whom a message came

Symmetric key

Ideally, a user (blue) could post a message (e.g., sensitive documents or a kernel update), and then go offline

And downloaders (yellow) could subsequently infer the message's authenticity without having to have already established a pairwise key with the publisher

A digital signature scheme comprises two algorithms

Signing function Sgn(SK, m)

- Inputs
 - Secret key SK
 - Fixed-length message
- Outputs: a *signature s*

A digital signature scheme comprises two algorithms

Signing function Sgn(SK, m)

- Inputs
 - Secret key SK
 - Fixed-length message
- Outputs: a *signature s*

This is a *randomized* algorithm (nondeterministic output)

A digital signature scheme comprises two algorithms

Signing function Sgn(SK, m)

- Inputs
 - Secret key SK
 - Fixed-length message
- Outputs: a *signature s*

This is a *randomized* algorithm (nondeterministic output)

SK a.k.a. "Signing key"

A digital signature scheme comprises two algorithms

Signing function Sgn(SK, m)

- Inputs
 - Secret key SK
 - Fixed-length message
- Outputs: a *signature s*

This is a *randomized* algorithm (nondeterministic output)

SK a.k.a. "Signing key"

Only one person can sign with a given (PK,SK) pair
A digital signature scheme comprises two algorithms

Signing function Sgn(SK, m)

- Inputs
 - Secret key SK
 - Fixed-length message
- Outputs: a *signature s*

This is a *randomized* algorithm (nondeterministic output)

SK a.k.a. "Signing key"

Only one person can sign with a given (PK,SK) pair

Verification function Vfy(PK, m, s)

- Inputs
 - Public key PK
 - Message and signature
- Outputs: Yes/No if valid (m,s)

A digital signature scheme comprises two algorithms

Signing function Sgn(SK, m)

- Inputs
 - Secret key SK
 - Fixed-length message
- Outputs: a *signature s*

This is a *randomized* algorithm (nondeterministic output)

SK a.k.a. "Signing key"

Only one person can sign with a given (PK,SK) pair

Verification function Vfy(PK, m, s)

- Inputs
 - Public key PK
 - Message and signature
- Outputs: Yes/No if valid (m,s)

Deterministic algorithm

A digital signature scheme comprises two algorithms

Signing function Sgn(SK, m)

- Inputs
 - Secret key SK
 - Fixed-length message
- Outputs: a *signature s*

This is a *randomized* algorithm (nondeterministic output)

SK a.k.a. "Signing key"

Only one person can sign with a given (PK,SK) pair

Verification function Vfy(PK, m, s)

- Inputs
 - Public key PK
 - Message and signature
- Outputs: Yes/No if valid (m,s)

Deterministic algorithm

Anyone with the PK can verify

A digital signature scheme comprises two algorithms

Signing Sgn(SK, m) \rightarrow a signature s

Verification Vfy(PK, m, s)
→ Yes/No if valid (m,s)

<u>Correctness</u> Vfy(PK, m, Sgn(SK, m)) = Yes

Security

Same as with MACs: even after a chosen plaintext attack, the attacker cannot demonstrate an existential forgery

Symmetric key

File downloads

One-to-many: O(N) key exchanges Generate public/private key pair (PK,SK)

Annouce PK publicly (on website, in newspaper, ...)

Symmetric key

File downloads

One-to-many: O(N) key exchanges Generate public/private key pair (PK,SK)

Annouce PK publicly (on website, in newspaper, ...)

Compute sig = Sgn(SK, msg)

Symmetric key

File downloads

One-to-many: O(N) key exchanges Generate public/private key pair (PK,SK)

Annouce PK publicly (on website, in newspaper, ...)

Compute sig = Sgn(SK, msg)

Publish msg || sig

Symmetric key

File downloads

One-to-many: O(N) key exchanges

Annouce PK publicly (on website, in newspaper, ...)

Compute sig = Sgn(SK, msg)

Publish msg || sig

can now go offline!

Symmetric key

File downloads

One-to-many: O(N) key exchanges

Generate public/private key pair (PK,SK)

Annouce PK publicly (on website, in newspaper, ...)

Compute sig = Sgn(SK, msg)

Publish msg || sig

can now go offline!

Obtain PK, msg || sig Vfy(PK, msg, sig)

Authenticity

Bob can prove that a message signed by Alice is truly from Alice (even without a *pairwise* key)

Authenticity

Bob can prove that a message signed by Alice is truly from Alice (even without a *pairwise* key)

Integrity

Bob can prove that no one has tampered with a signed message

Authenticity

Bob can prove that a message signed by Alice is truly from Alice (even without a *pairwise* key)

Integrity

Bob can prove that no one has tampered with a signed message

Non-repudiation

Authenticity

Bob can prove that a message signed by Alice is truly from Alice (even without a *pairwise* key)

Integrity

Bob can prove that no one has tampered with a signed message

Non-repudiation

Authenticity

Would require unforgeable handwritten signatures. This is the one property they *sort of* get

Integrity

Bob can prove that no one has tampered with a signed message

Non-repudiation

Authenticity

Would require unforgeable handwritten signatures. This is the one property they *sort of* get

Integrity

Would require having a signature that depended on each part in the body of the letter

Non-repudiation

Authenticity

Would require unforgeable handwritten signatures. This is the one property they *sort of* get

Integrity

Would require having a signature that depended on each part in the body of the letter

Non-repudiation

Would require both of the above (unforgeable signature that depends on each part of letter)