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Today:  
How do we establish K? 

How do we know with whom  
we are communicating?



DIFFIE HELLMAN KEY ESTABLISHMENT
BLACKBOX #4:
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x mod N

Given x and g, it is efficient to compute  
gx mod N

Given g and gx, it is efficient to compute x  
(simply take logg gx)

Given g and gx mod N it is infeasible to compute x  
Discrete log problem

g is a generator of mod N if  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MAN-IN-THE-MIDDLE (MITM) ATTACKS

ga mod N
Pick random b

gb mod N

The attacker can interpose between the two communicating parties  
and insert, delete, and modify messages.

gx mod N
Pick random a Pick random x

thinks he is talking to

thinks he is talking to

gx mod N

gbx mod N

thinks this is his  
    shared key with

gax mod N

thinks this is his  
    shared key with

The attacker can now eavesdrop on the conversation.  
Key property: Diffie-Hellman is not resilient to a MITM attack



PUBLIC KEY CRYPTOGRAPHY
BLACKBOX #5:

TO FIX THIS PROBLEM WE NEED…
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One-to-many: 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requires a key exchange, 
which requires both parties  
to be online

File downloads
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document, then goes  
offline (e.g., forever)
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to get a copy; how can 
it know the copy is really 
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Shortcomings of symmetric key

K K

Establishing a pairwise key 
requires a key exchange, 
which requires both parties  
to be online

Issue #3: How do you know to whom you’re talking?

Diffie-Hellman is resilient to eavesdropping, 
but not tampering

K K K1 K1 K2K2

vs
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Trent: A trusted third party

Alice Bob

KAT
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1. Everybody establishes a pairwise key with Trent  
Good: O(N) key exchanges

2. Trent validates each user’s identity; includes in message 
Good: Authenticated communication

E(KAT, msg || to:Bob) E(KBT, msg || from:Alice)

Bad: All messages get sent through Trent
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What are we trusting Trent not to do?

Alice Bob

KAT

KAT KBT

KBT

Just as “secure” meant nothing without an attack model, 
“trusted” means nothing without a trust model

1. Do not read messages
2. Do not alter messages
3. Do not forge messages

4. Do not go offline

E(KAT, msg || to:Bob) ….



Public key encryption

Key generation G
• Inputs 

• Source of randomness 
• Maximum key length L 

• Outputs: a key pair 
• PK = public key 
• SK = secret key

A public key encryption scheme comprises three algorithms

This is a randomized algorithm
(nondeterministic output)

PK and SK are intrinsically bound together: 
for a given PK, there is a single corresponding SK 

Difficult to infer SK from PK
Only one person should know SK; 

PK should be public to all

Example: RSA’s public keys are a pair: (exponent, modulus)



Public key encryption

Encryption E(PK, msg)
• Inputs 

• Public key PK 
• Message msg of  

fixed size 
• Outputs: a cipher text c 

same size as msg

A public key encryption scheme comprises three algorithms

This is a randomized algorithm
(vanilla RSA is deterministic; 

in practice, RSA-PKCS is used  
instead, which adds a nonce  

to the message)

Anyone who knows Alice’s PK can encrypt a message to her…

PK a.k.a. “Encryption key”



Public key encryption

Decryption D(SK, c)
• Inputs 

• Secret key SK 
• Cipher text c 

• Outputs: original msg 

A public key encryption scheme comprises three algorithms

This is a deterministic algorithm 
Should always return the 

original message

…but only Alice can decrypt that message



Public key encryption

Decryption D(SK, c)
→ original msg

A public key encryption scheme comprises three algorithms

Key generation G
→ PK = public key 
→ SK = secret key

Encryption E(PK, m)
→ cipher text c

Correctness
D(SK, E(PK, m)) = m

Security
E(PK, m) should appear random 
(small change to (PK,m) leads  

to large changes to c)

E() should approximate a one-way  
trapdoor function: cannot invert 

without access to SK
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Protocols with public key encryption

Symmetric key Generate public/private 
key pair (PK,SK)

Annouce PK publicly 
(on website, in newspaper, …)

Decrypt D(SK, c) = msg

Obtain PK

Send c = E(PK, msg)

All-to-all:  
O(N2) key 
exchanges

Email / chat

O(N) keys in total

Goal: deliver a confidential message
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Overcoming fixed message sizes

Encryption E(PK, msg)
• Inputs 

• Public key PK 
• Message msg of  

fixed size 
• Outputs: a cipher text c 

same size as msg

Like block ciphers,  
but there are not  
“modes” of public 
key encryption

Public key operations are slooooow!
Symmetric key operations are fast
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Hybrid encryption
Generate public/private key 
pair (PK,SK); publicize PK

Decrypt D(SK, cK) = K
Decrypt d(K, cmsg) = msg

Compute cK = E(PK, K)

Obtain PK
Generate symmetric key K

Compute cmsg = e(K, msg)

Send cK || cmsg

Now throw away K

Symm key
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Hybrid encryption

Compute cK = E(PK, K)

Obtain PK
Generate symmetric key K

Compute cmsg = e(K, msg)

Send cK || cmsg

The easy key distribution of public key

The speed and arbitrary message length of symmetric key



Protocols with public key cryptography

One-to-many: 
O(N) key 

exchanges

File downloads

Symmetric key

Goal: determine from whom a message came

Ideally, a user (blue) could post a 
message (e.g., sensitive documents  

or a kernel update), and then  
go offline

And downloaders (yellow) could 
subsequently infer the message’s 
authenticity without having to have 

already established a pairwise  
key with the publisher
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Digital signatures

Signing function Sgn(SK, m)
• Inputs 

• Secret key SK 
• Fixed-length message 

• Outputs: a signature s

A digital signature scheme comprises two algorithms

This is a randomized algorithm
(nondeterministic output)

SK a.k.a. “Signing key”

Verification function Vfy(PK, m, s)
• Inputs 

• Public key PK 
• Message and signature 

• Outputs: Yes/No if valid (m,s)

Deterministic algorithm

Only one person can sign with 
a given (PK,SK) pair

Anyone with the PK  
can verify



Digital signatures

Signing Sgn(SK, m)
 → a signature s

A digital signature scheme comprises two algorithms

Correctness
Vfy(PK, m, Sgn(SK, m)) = Yes

Verification Vfy(PK, m, s)
→ Yes/No if valid (m,s)

Security
Same as with MACs: even after  
a chosen plaintext attack, the  

attacker cannot demonstrate an  
existential forgery
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Protocols with digital signatures

One-to-many: 
O(N) key 

exchanges

File downloads

Symmetric key Generate public/private 
key pair (PK,SK)

Annouce PK publicly 
(on website, in newspaper, …)

Goal: determine from whom a message came

Compute sig = Sgn(SK, msg)

Publish msg || sig

Obtain PK, msg || sig
Vfy(PK, msg, sig)

can now go offline!
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Do handwritten signatures at the end of a 
letter have these properties?

Authenticity

Integrity

Non-repudiation

Would require unforgeable  
handwritten signatures. This is the  
one property they sort of get

Would require having a signature  
that depended on each part in 
the body of the letter

Would require both of the above  
(unforgeable signature that 
depends on each part of letter)


