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Block ciphers
Deterministic = use IVs
Fixed block size = use encryption “modes”

"t INTEGRITY
Message Authentication Codes (MACs)
K= K — Send (message, tag) pairs
Verify that they match

Yes/No

Today:

How do we establish K? G, {
. K +—p K
How do we know with whom x

we are communicating?




BLACKBOX #4:
DIFFIE HELLMAN KEY ESTABLISHMENT
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HIGH-LEVEL REVIEW OF MODULAR ARITHMETIC

g is a generator of mod N if
{1, 2, ...,N-1} = {g°mod N, gl mod N, ..., gN-2mod N}

N=5,g=3
30mod5=1 3'mod5=3 32mod5=4 33mod5=2

Given x and g, it is efficient to compute
g* mod N

Given g and g~, it is efficient to compute x
(simply take log, g¥)

Given g and gx mod N it is infeasible to compute x
Discrete log problem
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DIFFIE-HELLMAN KEY EXCHANGE

a g N
gbmod N

Public knowledge: g and N

Pick random a
gomod N
-

gbmod N Pick random b

-
Compute (gb mod N)« =Egab mod N) Compute (g» mod N)b :(gab mod N)

Shared secret: This is the key
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DIFFIE-HELLMAN KEY EXCHANGE

(gab mod N)

Given g and g*r mod N it is infeasible to compute x
Discrete log problem

Note that just multiplying g¢ and gb won’t suffice:
g2modN * gtmod N = getbmod N

Key property:
An eavesdropper cannot infer the shared secret (gab).

But what about active intermediaries?
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MAN-IN-THE-MIDDLE (MITM) ATTACKS

The attacker can interpose between the two communicating parties
and insert, delete, and modify messages.

xthinks he is talking to 8
Bthinks he is talking to ‘

Pick random a Pick random x Pick random
— —
e — —

g*mod N g'mod N
(gax mod N) (g x mod N)

xthinks this is his Bthinks this is his
shared key with shared key with

The attacker can now eavesdrop on the conversation.
Key property: Diffie-Hellman is not resilient to a MITM attack



TO FIX THIS PROBLEM WE NEED. ..

BLACKBOX #5:
PUBLIC KEY CRYPTOGRAPHY
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Shortcomings of symmetric key

:Establishing a pairwise key

x —> 8 requires a key exchange, :
:which requires both parties :

K K :to be online

Issue #3: How do you know to whom you’re talking?

Diffie-Hellman is resilient to eavesdropping,
but not tampering

2—8 - R—K—R

K K K1 Ki K2
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A protocol that solves this with trust

Trent: A frusted third party

E(Kar, msg || to:Bob) x E(Kst, msg || from:Alice)
AT KA
Alice x 8 Bob

Kat KeT

1. Everybody establishes a pairwise key with Trent
Good: O(N) key exchanges

2. Trent validates each user’s identity; includes in message
Good: Authenticated communication

Bad: All messages get sent through Trent
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AT KA
Alice x 8 Bob

Kat KeT
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What are we trusting Trent not to do”

E(Kar, msg || to:Bobi/ \
Alice x 8 Bob

Kat KeT

1. Do not read messages

2. Do not alter messages

3. Do not forge messages
4. Do not go offline



Puplic key encryption

A public key encryption scheme comprises three algorithms

Kev generation G This is a randomized algorithm
N (nondeterministic output)

* |nputs

e Source of randomness
« Maximum key length L | Difficult to infer SK from PK

« Qutputs: a key pair Only one person should know SK;
* PK = public key PK should be public to all

* SK = secret key

PK and SK are intrinsically bound together:
for a given PK, there is a single corresponding SK

Example: RSA's public keys are a pair: (exponent, modulus)



Puplic key encryption

A public key encryption scheme comprises three algorithms

Encryption E(PK, msg) This is a randomized algorithm
* Inputs (vanilla RSA is deterministic;

e Public key PK in practice, RSA-PKCS is used
iInstead, which adds a nonce
to the message)

* Message msg of
fixed size
* Qutputs: a cipher text ¢
same size as msg

PK a.k.a. “Encryption key”

Anyone who knows Alice’'s PK can encrypt a message to her...



Puplic key encryption

A public key encryption scheme comprises three algorithms

Decryption D(SK, ¢) This is a deterministic algorithm
* |Inputs Should always return the

* Secret key SK original message

* Ciphertextc
* Qutputs: original msg

...but only Alice can decrypt that message



Public Key encryption

A public key encryption scheme comprises three algorithms

Key generation G Correctness
~ PK = public key D(SK, E(PK, m)) = m

— SK = secret key

Encryption E(PK, m) Security
— cipher text ¢ E(PK, m) should appear random

(small change to (PK,m) leads

Decryption D(SK, ¢) to large changes to c)
— original msg E() should approximate a one-way

trapdoor function: cannot invert
without access to SK
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Protocols with public key encryption
Goal: deliver a confidential message

Symmetric key | Generate public/private
key pair (PK,SK)

Email / chat

Annouce PK publicly
(on website, in newspaper, ...)

Obtain PK 8

"’x Send ¢ = E(PK, msQ)
All-to-all:
O(N2) key x Decrypt D(SK, ¢) = msg
exchanges 5

O(N) keys in total
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Overcoming fixed message sizes

Encryption E(PK, msqg)
e |nputs
* Public key PK

Like block ciphers,
but there are not
‘modes” of public
key encryption

* Message msg of
fixed size
. cipher text ¢
same size as msg

Public key operations are slooooow!

Symmetric key operations are fast



Hyorid encryption



Hyobrid encryption

x Generate public/private key
pair (PK,SK); publicize PK



Hyobrid encryption

x Generate public/private key
pair (PK,SK); publicize PK

Obtain PK 8

Generate symmetric key K

Compute cmsg = €(K, msg)
Compute ck = E(PK, K)



Hyobrid encryption

x Generate public/private key
pair (PK,SK); publicize PK

Obtain PK 8

Generate symmetric key K

Symmkey — Compute Cmsg = €(K, msQg)

Public key Compute ck = E(PK, K)



Hyobrid encryption

x Generate public/private key
pair (PK,SK); publicize PK

Obtain PK 8

Generate symmetric key K

Symmkey — Compute Cmsg = €(K, msQg)

Public key Compute ck = E(PK, K) Now throw away K



Hyobrid encryption

x Generate public/private key
pair (PK,SK); publicize PK

Obtain PK 8

Generate symmetric key K

Symmkey — Compute Cmsg = €(K, msQg)
Public key Compute ck = E(PK, K) Now throw away K

Send CK H Cmsg



Hyobrid encryption

x Generate public/private key
pair (PK,SK); publicize PK

Obtain PK 8

Generate symmetric key K

Symmkey — Compute Cmsg = €(K, msQg)
Public key Compute ck = E(PK, K) Now throw away K

Seﬂd CK H Cmsg

x Decrypt D(SK, ck) = K
Decrypt d(K, cmsg) = msg



Hyobrid encryption

x Generate public/private key
pair (PK,SK); publicize PK

Obtain PK 8

Generate symmetric key K

Symmkey — Compute Cmsg = €(K, msQg)
Public key Compute ck = E(PK, K) Now throw away K

Seﬂd CK H Cmsg

x Decrypt D(SK, ck) = K Public key
Decrypt d(K, cmsg) = msg  Symm key



Hybrid encryption
Obtain PK 8

Generate symmetric key K

Compute cmsg = €(K, msg)
Compute ck = E(PK, K)

Send ck H Cmsg

The easy key distribution of public key

The speed and arbitrary message length of symmetric key



Protocols with public key cryptography

Goal: determine from whom a message came

Symmetric key
|[deally, a user (blue) could post a

File down/oads message (e.g., sensitive documents
or a kernel update), and then

go offline
x And downloaders (yellow) could

subsequently infer the message'’s
i authenticity without having to have
One-to- many already established a pairwise

O(N) key key with the publisher
exchanges :
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Digital signatures

A digital signature scheme comprises two algorithms

This is a randomized algorithm
(nondeterministic output)

Signing function Sgn(SK, m)
* |nputs

 Secret key SK SK a.k.a. “Signing key”

* Fixed-length message | Only one person can sign with
o Qutputs: a signature s a given (PK,SK) pair

Verification function Vfy(PK, m, s)

. Inputs Deterministic algorithm

* Public key PK
 Message and signature
* Qutputs: Yes/No if valid (m,s)

Anyone with the PK
can verify




Digital signatures

A digital signature scheme comprises two algorithms

Signing Sgn(SK, m) Verification Vfy(PK, m, s)
— a signature s — Yes/No if valid (m,s)

Correctness
Viy(PK, m, Sgn(SK, m)) = Yes

Security
Same as with MACs: even after

a chosen plaintext attack, the
attacker cannot demonstrate an
existential forgery
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Protocols with digital signatures

Goal: determine from whom a message came

Symmetric key Generate public/private

key pair (PK,SK)

File down/oads

Annouce PK publicly
é 888 (on website, in newspaper, ...)

Compute sig = Sgn(SK, msg)

Publish msg || sig

One-to- many can now go offline!
O(N) key . .
exchanges Obtain PK, msg || sig 8

Viy(PK, msg, sig)
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Do handwritten signatures at the end of a
letter have these properties?

Authenticity

Integrity

Non-repudiation

Would require unforgeable
handwritten signatures. This is the
one property they sort of get

Would require having a signature
that depended on each part in
the body of the letter

Would require both of the above
(unforgeable signature that
depends on each part of letter)



