
HOW CRYPTO FAILS 
IN PRACTICE

CMSC 414
APR 3 2018

POOR PROGRAMING

CryptoLint tool to perform static  
analysis on Android apps to detect  
how they are using crypto libraries

15,134 apps from Google play used crypto;
Analyzed 11,748 of them

CRYPTO MISUSE IN ANDROID APPS

48%
31%
17%
16%

14%

12%

15,134 apps from Google play used crypto;
Analyzed 11,748 of them

CRYPTO MISUSE IN ANDROID APPS

48%
31%
17%
16%

14%

12%

15,134 apps from Google play used crypto;
Analyzed 11,748 of them

CRYPTO MISUSE IN ANDROID APPS

NEVER use ECB
(but over 50% of Android apps do)

• BouncyCastle is a library that conforms to Java’s
Cipher interface:

• Java documentation specifies:

Cipher c =  
 Cipher.getInstance(“AES/CBC/PKCS5Padding”);
 
// Ultimately end up wrapping a ByteArrayOutputStream  
// in a CipherOutputStream

BOUNCYCASTLE DEFAULTS

48%
31%
17%
16%

14%

12%

15,134 apps from Google play used crypto;
Analyzed 11,748 of them

CRYPTO MISUSE IN ANDROID APPS

48%
31%
17%
16%

14%

12%

15,134 apps from Google play used crypto;
Analyzed 11,748 of them

CRYPTO MISUSE IN ANDROID APPS

A failure of the programmers to know the tools they use

A failure of library writers to provide safe defaults

• Do not roll your own cryptographic mechanisms
• Takes peer review
• Apply Kerkhoff’s principle

• Do not misuse existing crypto

• Do not even implement the underlying crypto

Avoid shooting yourself in the foot:

MISUSING CRYPTO

• Not talking about creating a brand new crypto scheme,
just implementing one that’s already widely accepted and
used.

• Kerkhoff’s principle: these are all open standards; should
be implementable.

• Potentially buggy/incorrect code, but so might be others’
implementations (viz. OpenSSL bugs, poor defaults in
Bouncy castles, etc.)

• So why not implement it yourself?

WHY NOT IMPLEMENT AES/RSA YOURSELF?

• Cryptography concerns the theoretical difficulty in
breaking a cipher

Cryptographic processing  
(Encrypt/decrypt/sign/etc.)

Secret keys

Input 
message

Output 
message

SIDE-CHANNEL ATTACKS

• Cryptography concerns the theoretical difficulty in
breaking a cipher

Cryptographic processing  
(Encrypt/decrypt/sign/etc.)

Secret keys

Input 
message

Output 
message

• But what about the information that a particular
implementation could leak?
• Attacks based on these are “side-channel attacks”

SIDE-CHANNEL ATTACKS

• Cryptography concerns the theoretical difficulty in
breaking a cipher

Cryptographic processing  
(Encrypt/decrypt/sign/etc.)

Secret keys

Input 
message

Output 
message

Leaked information 
 - Power consumption 
 - Electromagnetic radiation
 - Other (Timing, errors, etc.)

• But what about the information that a particular
implementation could leak?
• Attacks based on these are “side-channel attacks”

SIDE-CHANNEL ATTACKS

• Interpret power traces taken during a cryptographic
operation

• Simple power analysis can reveal the sequence of
instructions executed

SIMPLE POWER ANALYSIS (SPA)

Overall operation clearly visible:  
Can identify the 16 rounds of DES

SPA ON DES

Overall operation clearly visible:  
Can identify the 16 rounds of DES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SPA ON DES

Specific instructions are also discernible

SPA ON DES

Specific instructions are also discernible

Jump taken

No jump taken

SPA ON DES

HypotheticalEncrypt(msg, key) {
 for(int i=0; i < key.len(); i++) {  
 if(key[i] == 0)
 // branch 0
 else
 // branch 1
 }
}

HIGH-LEVEL IDEA

HypotheticalEncrypt(msg, key) {
 for(int i=0; i < key.len(); i++) {  
 if(key[i] == 0)
 // branch 0
 else
 // branch 1
 }
}

What if branch 0 had, e.g.,  
a jmp that brand 1 didn’t?

HIGH-LEVEL IDEA

HypotheticalEncrypt(msg, key) {
 for(int i=0; i < key.len(); i++) {  
 if(key[i] == 0)
 // branch 0
 else
 // branch 1
 }
}

What if branch 0 had, e.g.,  
a jmp that brand 1 didn’t?

Implementation issue: If the execution path depends
on the inputs (key/data), then SPA can reveal keys

HIGH-LEVEL IDEA

HypotheticalEncrypt(msg, key) {
 for(int i=0; i < key.len(); i++) {  
 if(key[i] == 0)
 // branch 0
 else
 // branch 1
 }
}

What if branch 0 had, e.g.,  
a jmp that brand 1 didn’t?

Implementation issue: If the execution path depends
on the inputs (key/data), then SPA can reveal keys

What if branch 0

HIGH-LEVEL IDEA

HypotheticalEncrypt(msg, key) {
 for(int i=0; i < key.len(); i++) {  
 if(key[i] == 0)
 // branch 0
 else
 // branch 1
 }
}

What if branch 0 had, e.g.,  
a jmp that brand 1 didn’t?

Implementation issue: If the execution path depends
on the inputs (key/data), then SPA can reveal keys

What if branch 0
 - took longer? (timing attacks)

HIGH-LEVEL IDEA

HypotheticalEncrypt(msg, key) {
 for(int i=0; i < key.len(); i++) {  
 if(key[i] == 0)
 // branch 0
 else
 // branch 1
 }
}

What if branch 0 had, e.g.,  
a jmp that brand 1 didn’t?

Implementation issue: If the execution path depends
on the inputs (key/data), then SPA can reveal keys

What if branch 0
 - took longer? (timing attacks)
 - gave off more heat?

HIGH-LEVEL IDEA

HypotheticalEncrypt(msg, key) {
 for(int i=0; i < key.len(); i++) {  
 if(key[i] == 0)
 // branch 0
 else
 // branch 1
 }
}

What if branch 0 had, e.g.,  
a jmp that brand 1 didn’t?

Implementation issue: If the execution path depends
on the inputs (key/data), then SPA can reveal keys

What if branch 0
 - took longer? (timing attacks)
 - gave off more heat?
 - made more noise? 
 - …

HIGH-LEVEL IDEA

• SPA just visually inspects a single run

• DPA runs iteratively and reactively
• Get multiple samples
• Based on these, construct new plaintext messages as

inputs, and repeat

DIFFERENTIAL POWER ANALYSIS (DPA)

• Hide information by making the execution paths
depend on the inputs as little as possible
• Have to give up some optimizations that depend on

particular bit values in keys
- Some Chinese Remainder Theorem (CRT) optimizations

permitted remote timing attacks on SSL servers

• The crypto community should seek to design
cryptosystems under the assumption that some
information is going to leak

MITIGATING SUCH ATTACKS

POOR POLICIES FROM GOVERNMENTS
Exploits export-grade encryption

1024-bit and smaller feasibly broken

Logjam downgrades to export-grade (512)

Clipper chip
A lesson in poorly designed protocols

Goal: 
Confidentiality

Support encrypted communication  
between devices

Permit law enforcement to obtain  
“session keys” with a warrant

Goal: 
Key escrow

Clipper Clipper

Clipper chip: Design
Tamper-proof hardware

Skipjack  
encryption algorithm

Hardware that is difficult to
introspect (e.g., extract keys),
alter (change the algorithms),
or impersonate

Diffie-Hellman 
key exchange

LEAF generation
& validation

Skipjack Keys  
Unit key 

Global family key

Clipper chip: Design
Tamper-proof hardware

Skipjack  
encryption algorithm

Block cipher designed by the  
NSA, originally classified 
SECRET.

(Violates Kirchhoff’s principle)
 
Broken within one day of
declassification.

80-bit key; similar algorithm
to DES (also broken)

Diffie-Hellman 
key exchange

LEAF generation
& validation

Skipjack Keys  
Unit key 

Global family key

Clipper chip: Design
Tamper-proof hardware

Skipjack  
encryption algorithm

Assigned when the hardware 
is manufactured.

Unit key is unique to this unit 
in particular (each Clipper chip  
also has a unit ID).

Global family key is the same 
across many units.Diffie-Hellman 

key exchange

LEAF generation
& validation

Skipjack Keys  
Unit key 

Global family key

Clipper chip: Design
Tamper-proof hardware

Skipjack  
encryption algorithm

Used for establishing a 
(symmetric) session key

Session keys are ephemeral
(e.g., last only for a given
connection, transaction, etc.)

General properties about
session keys:
• Compromising one session key 

does not compromise others
• Compromising a long-term key 

should not compromise past 
session keys (forward secrecy)

Diffie-Hellman 
key exchange

LEAF generation
& validation

Skipjack Keys  
Unit key 

Global family key

Clipper chip: Design
Tamper-proof hardware

Skipjack  
encryption algorithm

Diffie-Hellman 
key exchange

LEAF generation
& validation

Skipjack Keys  
Unit key 

Global family key

LEAF 
(Law Enforcement Access Field)

To permit wiretapping, law 
enforcement needs to be able  

to extract session keys, but  
only has access to what is sent  

during communication

Idea: send data that has enough  
info to allow law enforcement  
to extract keys (but not any  

other eavesdropper).

LEAF protocol design

Clipper Clipper

1. DH key exchange

2. Each send LEAF packet

The Clipper chips will not decrypt until  
it has received a valid LEAF packet

3. Send data encrypted 
with the session key

Law enforcement sees all packets.
• Cannot infer key from DH key exchange
• Can infer it from the LEAF packet

LEAF message structure
Session key 80 bits

SkipjackUnit Key Hash algorithm

16 bits

Encrypted session key HashUnit ID

Global family key Skipjack

LEAF

Other 
variables

LEAF message structure
Session key 80 bits

SkipjackUnit Key Hash algorithm

16 bits

Encrypted session key HashUnit ID

Global family key Skipjack

LEAF

Other 
variablesThe other Clipper chip also has the Global Family key

=> Can decrypt the LEAF to obtain this triple

LEAF message structure
Session key 80 bits

SkipjackUnit Key Hash algorithm

16 bits

Encrypted session key HashUnit ID

Global family key Skipjack

LEAF

Other 
variables

The other Clipper chip “verifies”
the LEAF by making sure that  

the hash is correct

LEAF message structure
Session key 80 bits

SkipjackUnit Key Hash algorithm

16 bits

Encrypted session key HashUnit ID

Global family key Skipjack

LEAF

Other 
variablesLaw enforcement also has the Global Family Key

=> Can decrypt the LEAF to obtain this triple

LEAF message structure
Session key 80 bits

SkipjackUnit Key Hash algorithm

16 bits

Encrypted session key HashUnit ID

Global family key Skipjack

LEAF

Other 
variables

Law enforcement does not have direct access  
to all unit keys; needs a warrant to get them

Unit keys are split across two locations
(one location gets a OTP, the other gets the XOR)

LEAF: failure
Session key 80 bits

SkipjackUnit Key Hash algorithm

16 bits

Encrypted session key HashUnit ID

Global family key Skipjack

LEAF

Other 
variables

To verify the LEAF, 
the otherClipper chip 
only checks the hash

Clipper chips also allow you to  
test a LEAF locally

LEAF: failure
Session key 80 bits

SkipjackUnit Key Hash algorithm

16 bits

Encrypted session key HashUnit ID

Global family key Skipjack

LEAF

Other 
variables

Encrypted session key HashUnit ID

Generate a random LEAF =>  
1/216 chance of a valid hash

Validates at the other 
Clipper chip (so it will 
decrypt messages)

But law enforcement will just  
see random ID & key

POOR CERTIFICATE MANAGEMENT

Websites aren’t properly revoking their certificates

Browsers aren’t properly checking for revocations

Websites aren’t keeping their secret keys secret

POOR CERTIFICATE MANAGEMENT

Websites aren’t properly revoking their certificates

Browsers aren’t properly checking for revocations

Websites aren’t keeping their secret keys secret

Websites have disincentive to do the right thing (CAs charge; key management hard)

Browsers have a disincentive to do the right thing (page load times)

CAs have incentive to introduce disincentives (bandwidth costs)

Why?

