Decision Trees & Limits of Learning

CMSC 422

Marine Carpuat
marine@cs.umd.edu

Credit: some examples & figures by Tom Mitchell
Today’s Topics

• Decision trees
 – What is the inductive bias?
 – Generalization issues: overfitting/underfitting

• Practical concerns: dealing with data
 – Train/dev/test sets
 – From raw data to well-defined examples
DECISION TREES
Recap: A decision tree to decide whether to play tennis
Recap: Function Approximation with Decision Trees

Problem setting
• Set of possible instances X
 – Each instance $x \in X$ is a feature vector $x = [x_1, \ldots, x_D]$
• Unknown target function $f: X \rightarrow Y$
 – Y is discrete valued
• Set of function hypotheses $H = \{h \mid h: X \rightarrow Y\}$
 – Each hypothesis h is a decision tree

Input
• Training examples $\{(x^{(1)}, y^{(1)}), \ldots, (x^{(N)}, y^{(N)})\}$ of unknown target function f

Output
• Hypothesis $h \in H$ that best approximates target function f
Decision Trees

• What is a decision tree?
• How to learn a decision tree from data?
• What is the inductive bias?
• Generalization?
 – Overfitting/underfitting
 – Selecting train/dev/test data
Evaluating the learned hypothesis h

• Assume
 – we’ve learned a tree h using the top-down induction algorithm
 – It fits the training data perfectly

• Are we done? Can we guarantee we have found a good hypothesis?
Recall: Formalizing Induction

• Given
 – a loss function l
 – a sample from some unknown data distribution D

• Our task is to compute a function f that has low expected error over D with respect to l.

$$\mathbb{E}_{(x,y) \sim D} \{l(y, f(x))\} = \sum_{(x,y)} D(x, y)l(y, f(x))$$
Training error is not sufficient

• We care about **generalization** to new examples

• A tree can classify training data perfectly, yet classify new examples incorrectly
 – Because training examples are only a sample of data distribution
 • a feature might correlate with class by coincidence
 – Because training examples could be noisy
 • e.g., accident in labeling
Let’s add a noisy training example. How does this affect the learned decision tree?

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
</tr>
<tr>
<td>D15</td>
<td>Sunny</td>
<td>Hot</td>
<td>Normal</td>
<td>Strong</td>
</tr>
</tbody>
</table>
Overfitting

• Consider a hypothesis \(h \) and its:
 – Error rate over training data \(\text{error}_{\text{train}}(h) \)
 – True error rate over all data \(\text{error}_{\text{true}}(h) \)

• We say \(h \) overfits the training data if
 \[
 \text{error}_{\text{train}}(h) < \text{error}_{\text{true}}(h)
 \]

• Amount of overfitting =
 \[
 \text{error}_{\text{true}}(h) - \text{error}_{\text{train}}(h)
 \]
Evaluating on test data

• Problem: we don’t know $error_{true}(h)$!

• Solution:
 – we set aside a test set
 • some examples that will be used for evaluation
 – we don’t look at them during training!
 – after learning a decision tree, we calculate $error_{test}(h)$
Measuring effect of overfitting in decision trees

![Graph showing accuracy vs. size of tree (number of nodes) for training and test data.](image)
Overfitting

- Another way of putting it

- A hypothesis \(h \) is said to **overfit the training data**, if there is another hypothesis \(h' \), such that
 - \(h \) has a smaller error than \(h' \) on the training data
 - but \(h \) has larger error on the test data than \(h' \).
Underfitting/Overfitting

• Underfitting
 – Learning algorithm had the opportunity to learn more from training data, but didn’t

• Overfitting
 – Learning algorithm paid too much attention to idiosyncracies of the training data; the resulting tree doesn’t generalize
Practical impact on decision tree learning

• What we want:
 – A decision tree that neither underfits nor overfits
 – Because it is is expected to do best in the future

• How can we encourage that behavior?
 – Set a maximum tree depth D
 – D is a hyperparameter
Decision Trees

• What is a decision tree?
• How to learn a decision tree from data?
• What is the inductive bias?
 – Occam’s razor: preference for short trees
• Generalization?
 – Overfitting/underfitting
Your thoughts?

What are the pros and cons of decision trees?
DEALING WITH DATA
Robocop is an intelligent science fiction thriller and social satire, one with class and style. The film, set in old Detroit in the year 1991, stars Peter Weller as Murphy, a lieutenant on the city's police force.

1991's Detroit suffers from rampant crime and a police department run by a private contractor (Security Concepts Inc.). The city's employees (the cops) are threatening to strike. To make matters worse, a savage group of cop-killers has been terrorizing the city. [...]

Do the folks at Disney have no common decency? They have resurrected yet another cartoon and turned it into a live-action hodgepodge of expensive special effects, embarrassing writing and kid-friendly slapstick. Wasn't Mr. Magoo enough, people? Obviously not. Inspector Gadget is not what I would call ideal family entertainment. [...]
Train/dev/test sets

In practice, we always split examples into 3 distinct sets

• **Training set**
 – Used to learn the **parameters** of the ML model
 – e.g., what are the nodes and branches of the decision tree

• **Development set**
 – aka tuning set, aka validation set, aka held-out data)
 – Used to learn **hyperparameters**
 • Parameter that controls other parameters of the model
 • e.g., max depth of decision tree

• **Test set**
 – Used to evaluate how well we’re doing on new **unseen** examples
LIMITS OF ML
Not everything is learnable

A ML might fail on a task for many reasons
- Noisy training data
 - Noise could be in features, or in labels
- Features are not useful
- Some examples might not have single correct answer
- Mismatch between inductive bias of learner and concept we aim to learn
Summary: what you should know

Decision Trees
• What is a decision tree, and how to induce it from data

Fundamental Machine Learning Concepts
• Difference between memorization and generalization
• What inductive bias is, and what is its role in learning
• What underfitting and overfitting means
• How to take a task and cast it as a learning problem
• Why you should never ever touch your test data!!