Decision Trees & Limits of Learning

CMSC 422

MARINE CARPUAT

marine@cs.umd.edu

Today's Topics

- Decision trees
 - What is the inductive bias?
 - Generalization issues: overfitting/underfitting
- Practical concerns: dealing with data
 - Train/dev/test sets
 - From raw data to well-defined examples

DECISION TREES

Recap: A decision tree to decide whether to play tennis

Recap: Function Approximation with Decision Trees

Problem setting

- Set of possible instances X
 - Each instance $x \in X$ is a feature vector $x = [x_1, ..., x_D]$
- Unknown target function $f: X \to Y$
 - Y is discrete valued
- Set of function hypotheses $H = \{h \mid h: X \rightarrow Y\}$
 - Each hypothesis h is a decision tree

Input

• Training examples $\{(x^{(1)}, y^{(1)}), ... (x^{(N)}, y^{(N)})\}$ of unknown target function f

Output

• Hypothesis $h \in H$ that best approximates target function f

Decision Trees

- What is a decision tree?
- How to learn a decision tree from data?
- What is the inductive bias?
- Generalization?
 - Overfitting/underfitting
 - Selecting train/dev/test data

Evaluating the learned hypothesis h

- Assume
 - we've learned a tree h using the top-down induction algorithm
 - It fits the training data perfectly

 Are we done? Can we guarantee we have found a good hypothesis?

Recall: Formalizing Induction

- Given
 - a loss function *l*
 - a sample from some unknown data distribution D

• Our task is to compute a function f that has low expected error over D with respect to l.

$$\mathbb{E}_{(x,y)\sim D}\{l(y,f(x))\} = \sum_{(x,y)} D(x,y)l(y,f(x))$$

Training error is not sufficient

- We care about generalization to new examples
- A tree can classify training data perfectly, yet classify new examples incorrectly
 - Because training examples are only a sample of data distribution
 - a feature might correlate with class by coincidence
 - Because training examples could be noisy
 - e.g., accident in labeling

Let's add a noisy training example. How does this affect the learned decision tree?

Outlook

	Day	Outlook	Temperature	Humidity	Wind				<u> </u>
	D1	Sunny	Hot	High	Weak	Suni	ıy Ove	ercast 	Rain
	D2	Sunny	Hot	High	Strong	Humidity			Γ
	D3	Overcast	Hot	High	Weak	Thimatiy		Yes	L
	D4	Rain	Mild	High	Weak				
	D5	Rain	Cool	Normal	Weak	/ \ High Norma	al		Stron
	D6	Rain	Cool	Normal	Strong	/	\		
	D7	Overcast	Cool	Normal	Strong	No	Yes		No
0	D8	Sunny	Mild	High	Weak	NO			
	D9	Sunny	Cool	Normal	Weak	Yes			
	D10	Rain	Mild	Normal	Weak	Yes			
	D11	Sunny	Mild	Normal	Strong	Yes			
	D12	Overcast	Mild	High	Strong	Yes			
	D13	Overcast	Hot	Normal	Weak	Yes			
	D14	Rain	Mild	High	Strong	No			
	D15	Sunnv	Hot	Normal	Strong	No			

Overfitting

- Consider a hypothesis h and its:
 - Error rate over training data $error_{train}(h)$
 - True error rate over all data $error_{true}(h)$
- We say h overfits the training data if $error_{train}(h) < error_{true}(h)$
- Amount of overfitting = $error_{true}(h) error_{train}(h)$

Evaluating on test data

• Problem: we don't know $error_{true}(h)!$

- Solution:
 - we set aside a test set
 - some examples that will be used for evaluation
 - we don't look at them during training!
 - after learning a decision tree, we calculate $error_{test}(h)$

Measuring effect of overfitting in decision trees

Overfitting

Another way of putting it

- A hypothesis h is said to overfit the training data, if there is another hypothesis h', such that
 - h has a smaller error than h' on the training data
 - but h has larger error on the test data than h'.

Underfitting/Overfitting

Underfitting

 Learning algorithm had the opportunity to learn more from training data, but didn't

Overfitting

 Learning algorithm paid too much attention to idiosyncracies of the training data; the resulting tree doesn't generalize

Practical impact on decision tree learning

- What we want:
 - A decision tree that neither underfits nor overfits
 - Because it is expected to do best in the future
- How can we encourage that behavior?
 - Set a maximum tree depth D
 - D is a hyperparameter

Decision Trees

- What is a decision tree?
- How to learn a decision tree from data?
- What is the inductive bias?
 - Occam's razor: preference for short trees
- Generalization?
 - Overfitting/underfitting

Your thoughts?

What are the pros and cons of decision trees?

DEALING WITH DATA

What real data looks like.

```
1 robocop is an intelligent science fiction thriller and
social satire, one with class and style. the film,
set in old detroit in the year 1991, stars peter weller
as murphy ... a lieutenant on the city's nolice force .
1991's de
                                              a police
departmen
                                             hitv
            How would you define input
concepts
                                              are
             vectors x to represent each
threateni
                                             e , a savage
group of
                                              city . [...]
           example? What features would
0 do the
                                             ty? they
                      you use?
                                             ed it into a
have resul
                                             ffects ,
live acti
embarrassing writing and kid-rriendry stapstick . wasn't
mr . magoo enough , people ? obviously not . inspector
gadget is not what i would call ideal family
entertainment .
```

Train/dev/test sets

In practice, we always split examples into 3 distinct sets

Training set

- Used to learn the parameters of the ML model
- e.g., what are the nodes and branches of the decision tree

Development set

- aka tuning set, aka validation set, aka held-out data)
- Used to learn hyperparameters
 - Parameter that controls other parameters of the model
 - e.g., max depth of decision tree

Test set

Used to evaluate how well we're doing on new unseen examples

LIMITS OF ML

Not everything is learnable

A ML might fail on a task for many reasons

- Noisy training data
 - Noise could be in features, or in labels
- Features are not useful
- Some examples might not have single correct answer
- Mismatch between inductive bias of learner and concept we aim to learn

Summary: what you should know

Decision Trees

What is a decision tree, and how to induce it from data

Fundamental Machine Learning Concepts

- Difference between memorization and generalization
- What inductive bias is, and what is its role in learning
- What underfitting and overfitting means
- How to take a task and cast it as a learning problem
- Why you should never ever touch your test data!!