The Perceptron

CMSC 422 MARINE CARPUAT marine@cs.umd.edu

Credit: figures by Piyush Rai and Hal Daume III

This week

- A new model/algorithm
 - the perceptron
 - and its variants: voted, averaged
- Fundamental Machine Learning Concepts
 - Online vs. batch learning
 - Error-driven learning
- Project 1 coming soon!

Geometry concept: Hyperplane

- Separates a D-dimensional space into two half-spaces
- Defined by an outward pointing normal vector $w \in \mathbb{R}^{D}$
 - *w* is **orthogonal** to any vector lying on the hyperplane
- Hyperplane passes through the origin, unless we also define a **bias** term b

Binary classification via hyperplanes

- Let's assume that the decision boundary is a hyperplane
- Then, training consists in finding a hyperplane *w* that separates positive from negative examples

Binary classification via hyperplanes

 At test time, we check on what side of the hyperplane examples fall

$$\hat{y} = sign(w^T x + b)$$

Function Approximation with Perceptron

Problem setting

• Set of possible instances X

- Each instance $x \in X$ is a feature vector $x = [x_1, ..., x_D]$

• Unknown target function $f: X \rightarrow Y$

- Y is binary valued $\{-1; +1\}$

- Set of function hypotheses $H = \{h \mid h: X \rightarrow Y\}$
 - Each hypothesis h is a hyperplane in D-dimensional space

Input

• Training examples { $(x^{(1)}, y^{(1)}), ... (x^{(N)}, y^{(N)})$ } of unknown target function f

Output

• Hypothesis $h \in H$ that best approximates target function f

Perception: Prediction Algorithm

Algorithm 6 PERCEPTRONTEST $(w_0, w_1, \ldots, w_D, b, \hat{x})$

 $a \leftarrow \sum_{d=1}^{D} w_d \hat{x}_d + b$ 2: return sign(a)

// compute activation for the test example

Aside: biological inspiration

Analogy: the perceptron as a neuron

Perceptron Training Algorithm

Properties of the Perceptron training algorithm

Online

- We look at one example at a time, and update the model as soon as we make an error

- As opposed to batch algorithms that update parameters after seeing the entire training set
- Error-driven
 - We only update parameters/model if we make an error

Perceptron update: geometric interpretation

Practical considerations

- The order of training examples matters!
 Random is better
- Early stopping
 - Good strategy to avoid overfitting
- Simple modifications dramatically improve performance
 - voting or averaging

Standard Perceptron: predict based on final parameters

Algorithm 5 PERCEPTRONTRAIN(**D**, *MaxIter*) 1: $w_d \leftarrow o$, for all $d = 1 \dots D$ // initialize weights $2: b \leftarrow 0$ // initialize bias $_{3:}$ for *iter* = 1 ... MaxIter do for all $(x,y) \in \mathbf{D}$ do 4: $a \leftarrow \sum_{d=1}^{D} w_d x_d + b$ // compute activation for this example 5: if $ya \leq o$ then 6: $w_d \leftarrow w_d + yx_d$, for all $d = 1 \dots D$ // update weights 7: $b \leftarrow b + y$ // update bias 8: end if 9: end for 10: TT: end for ^{12:} return w_0, w_1, \ldots, w_D, b

Predict based on final + intermediate parameters

• The voted perceptron

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(k)}\operatorname{sign}\left(\boldsymbol{w}^{(k)}\cdot\hat{\boldsymbol{x}} + b^{(k)}\right)\right)$$

The averaged perceptron

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(\mathsf{k})} \left(\boldsymbol{w}^{(\mathsf{k})} \cdot \hat{\boldsymbol{x}} + b^{(\mathsf{k})}\right)\right)$$

• Require keeping track of "survival time" of weight vectors $c^{(1)}, \ldots, c^{(K)}$

How would you modify this algorithm for voted perceptron?

Algorithm 5 PERCEPTRONTRAIN(**D**, *MaxIter*) 1: $w_d \leftarrow o$, for all $d = 1 \dots D$ // initialize weights 2: $b \leftarrow 0$ // initialize bias $_{3:}$ for *iter* = 1 ... MaxIter do for all $(x,y) \in \mathbf{D}$ do 4: $a \leftarrow \sum_{d=\tau}^{D} w_d x_d + b$ // compute activation for this example 5: if $ya \leq o$ then 6: $w_d \leftarrow w_d + yx_d$, for all $d = 1 \dots D$ // update weights 7: $b \leftarrow b + y$ // update bias 8: end if 9: end for 10: TT: end for ^{12:} **return** w_0, w_1, \ldots, w_D, b

How would you modify this algorithm for averaged perceptron?

Algorithm 5 PERCEPTRONTRAIN(**D**, *MaxIter*) 1: $w_d \leftarrow o$, for all $d = 1 \dots D$ // initialize weights $2: b \leftarrow 0$ // initialize bias $_{3:}$ for *iter* = 1 ... *MaxIter* do for all $(x,y) \in \mathbf{D}$ do 4: $a \leftarrow \sum_{d=1}^{D} w_d x_d + b$ // compute activation for this example 5: if $ya \leq o$ then 6: $w_d \leftarrow w_d + yx_d$, for all $d = 1 \dots D$ // update weights 7: $b \leftarrow b + y$ // update bias 8: end if 9: end for 10: TT: end for ^{12:} return w_0, w_1, \ldots, w_D, b

Averaged perceptron decision rule

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(k)} \left(\boldsymbol{w}^{(k)} \cdot \hat{\boldsymbol{x}} + b^{(k)}\right)\right)$$

can be rewritten as

$$\hat{y} = \operatorname{sign}\left(\left(\sum_{k=1}^{K} c^{(k)} \boldsymbol{w}^{(k)}\right) \cdot \hat{\boldsymbol{x}} + \sum_{k=1}^{K} c^{(k)} \boldsymbol{b}^{(k)}\right)$$

Averaged Perceptron Training

Algorithm 7 AveragedPerceptronTrain(D, MaxIter)	
$w \leftarrow \langle o, o, \dots o \rangle , b \leftarrow o$	// initialize weights and bias
2: $\boldsymbol{u} \leftarrow \langle o, o, \ldots o \rangle$, $\boldsymbol{\beta} \leftarrow o$	// initialize cached weights and bias
$_{3:} C \leftarrow 1$	// initialize example counter to one
4: for $iter = 1 \dots MaxIter$ do	
5: for all $(x,y) \in \mathbf{D}$ do	
6: if $y(\boldsymbol{w}\cdot\boldsymbol{x}+b) \leq o$ then	
$w \leftarrow w + y x$	// update weights
$b \leftarrow b + y$	// update bias
9: $u \leftarrow u + y c x$	// update cached weights
$\beta \leftarrow \beta + y c$	// update cached bias
III: end if	
$C \leftarrow C + 1$	// increment counter regardless of update
^{13:} end for	
14: end for	
^{15:} return $w - \frac{1}{c} u, b - \frac{1}{c} \beta$	// return averaged weights and bias

This week

- A new model/algorithm
 - the perceptron
 - and its variants: voted, averaged
- Fundamental Machine Learning Concepts
 - Online vs. batch learning
 - Error-driven learning
- Project 1 coming soon!