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This week

* The perception: a new model/algorithm
— its variants: voted, averaged
— convergence proof

» Fundamental Machine Learning Concepts
— Online vs. batch learning
— Error-driven learning
— Linear separability and margin of a dataset

* Project 1 published today



Recap: Perceptron for binary
classification

 Classifier = hyperplane that
separates positive from
negative examples

9 = sign(wlx + b)

* Perceptron training

— Finds such a hyperplane
— Online & error-driven



Recap: Perceptron updates

Update for a misclassified
positive example:




Recap: Perceptron updates

Update for a misclassified
negative example:




Standard Perceptron: predict
pased on final parameters

Algorithm 5 PERCEPTRONTRAIN(D, Maxlter)

v wy 4o, forall d=1...D // initialize weights
> b4+ o0 // initialize bias
 foriter =1 ... MaxIter do

for all (x,y) € D do

4
5 a<— ZEZI wyxg+b /I compute activation for this example
6 if ya < o then
7 Wy < wyg +yxg, forall d=1...D // update weights
8 b<—b+y // update bias
9 end if

end for
«: end for

= return wg, wq, ..., wp, b
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* The voted perceptron

K
y = sign (Z cWsign (w(k) R4 b(k)))
k=1

* The averaged perceptron

K
i = sign (Z ) (w(k) X+ b(k)))
k=1

« Require keeping track of “survival time” of

weight vectors ¢V, ..., ¢

K)



Averaged Perceptron Training

Algorithm 7 AVERAGEDPERCEPTRONTRAIN(D, Maxlter)

« w < {0,0,...0) , b+ o0

// initialize weights and bias

= u<+ (0,0,...00 , B<+o
32 C<— 1

// initialize cached weights and bias
// initialize example counter to one

. foriter =1 ... MaxIter do

e

6:

for all (x,y) € D do
if y(w-x+0b) <othen

7: W~ w+yx // update weights
8 b+<b+y // update bias
9 U< u+ycx // update cached weights
10: B pB+yc // update cached bias
11 end if

12: C4—Cc+1 // increment counter regardless of update
3 end for

.._end for

15:

return w-Lu, b-18

/] return averag_;ed weights and bias




Can the perceptron always find a
hyperplane to separate positive
from negative examples?



Convergence of Perceptron

* The perceptron has converged if it can
classity every training example correctly

—l.e. if it has found a hyperplane that correctly
separates positive and negative examples

 Under which conditions does the

perceptron converge and how long does it
take?



Convergence of Perceptron

Theorem (Block & Novikoff, 1962)

If the training data D = {(x1,y1), ..., (xn, YN} 1S
linearly separable with margin y by a unit norm
hyperplane w, (||w,||=1) with b = 0,

RZ

Then perceptron training converges after 7z

errors during training
(assuming (||x||< R) for all x).



Margin of a data set D

margin(D, w, b) — { min(y ,)ep y(w-x+0b) ifw seI?arates D (4.8)
—00 otherwise
Distance between the
hyperplane (w,b) and
the nearest pointin D
margin(D) = sup margin(D, w, b) (4.9)

w,b

Largest attainable
margin on D




Theorem (Block & Novikoff, 1962)

If the training data D = {(x{,y1), ..., (xn, Yn)} is linearly
separable with margin y by a unit norm hyperplane

w, (||w,||= 1) with b = 0,then perceptron training converges
Z

after 1;_2 errors during training (assuming (||x||< R) for all x).

Proof:

@ Margin of w, on any arbitrary example (X, y,): ="

||w*|| = YW, Xp 2 7Y

Consider the (k + 1)"'mistake: y,w/x, <0, and update wy 11 = Wi + y,X,

(3 T f i

W/ W =W/ W, + y,Ww/X, > w/w, +7 (why is this nice?)

)

)

@ Repeating iteratively k times, we get w[+1w* > k~y (1)

O [[wisa|* = ||wil[* + 2yaw ) x, + [[x[[* < [|wi|[*> + R* (since y,w, x, < 0)
)

Repeating iteratively k times, we get |lwy1||? < kR? (2)



Theorem (Block & Novikoff, 1962)

If the training data D = {(x{,y1), ..., (xn, Yn)} is linearly
separable with margin y by a unit norm hyperplane

w, (||w,||= 1) with b = 0,then perceptron training converges

Z
after R—z errors during training (assuming (||x||< R) for all x).

| 4

/What does this mean? \

* Perceptron converges quickly when margin is large,
slowly when it is small

* Bound does not depend on number of training

examples N, nor on number of features
 Proof guarantees that perceptron converges, but not

k necessarily to the max margin separator /




Practical Implications

 Sensitivity to noise

— if the data is not linearly separable due to noise, no
guarantee of convergence or accuracy

* Linear separability in practice
— Data frequently linearly separable in practice

— Especially when number of features >> number of
examples

* Risk of overfitting mitigated by
— Early stopping
— Averaging



What you should know

 Perceptron concepts

— training/prediction algorithms (standard, voting,
averaged)

— convergence theorem and what practical guarantees it
gives us

— how to draw/describe the decision boundary of a
perceptron classifier
* Fundamental ML concepts

— Determine whether a data set is linearly separable and
define its margin

— Error driven algorithms, online vs. batch algorithms



