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Today: Practical issues

• Learning algorithm is only one of many steps in 

designing a ML application

• Many things can go wrong, but there are 

practical strategies for

– Improving inputs

– Evaluating

– Tuning

– Debugging

• Fundamental ML concepts:  estimation vs. 

approximation error



Typical Design Process

for an ML Application



Practical Issues

• “garbage in, garbage out”

– Learning algorithms can’t compensate for 

useless training examples

• E.g., if all features are irrelevant

• Feature design can have bigger impact on 

performance than tweaking the learning 

algorithm
• E.g., feature combination



Improving Input Representations 

• Feature pruning

• Feature normalization

• Example normalization

See CIML 5.3



Practical Issues: Evaluation

• So far we’ve measured classification performance 

using accuracy

• But this is not a good metric when some errors 

matter mode than others

– Given medical record, predict whether patient has 

cancer or not

– Given a document collection and a query, find 

documents in collection that are relevant to query







Practical Issues: hyperparameter tuning 

with dev set vs. cross-validation



Practical Issues: Debugging!

• You’ve implemented a learning algorithm, 

• You try it on some train/dev/test data

• You get really bad performance

• What’s going on?

– Is the data too noisy?

– Is the learning problem too hard?

– Is the implementation of the learning 

algorithm buggy?



Strategies for Isolating

Causes of Errors

• Is the problem with generalization to test data?

– Can learner fit the training data?

– Yes: problem is in generalization to test data

– No: problem is in representation (need better features 

or better data)

• Train/test mismatch?
– Try reselecting train/test by shuffling training data and 

test together



Strategies for Isolating

Causes of Errors

• Is algorithm implementation correct?

– Measure loss rather than accuracy

– Hand-craft a toy dataset

• Is representation adequate? 

– Can you learn if you add a cheating feature that 

perfectly correlates with correct class?

• Do you have enough data?

– Try training on 80% of the training set, how much 

does it hurt performance?



Formalizing Errors

The learned 
classifier

set of all possible classifiers 
using a fixed representation

How far is the learned 
classifier f from the optimal 

classifier f*?

Quality of the model 
family

*



The bias/variance trade-off

• Trade-off between

– approximation error (error due to bias)

– estimation error (error due to variance)

• Example:

– Consider the always positive classifier

• Strongly biased toward predicting +1 no matter 

what the input

• Low variance as a function of a random draw of the 

training set



The bias/variance trade-off 

illustrated

http://scott.fortmann-roe.com/docs/BiasVariance.html

Assume

Center of the target = 

model that perfectly 

predicts the correct 

values.

As we move away 

from the bulls-eye, 

predictions get worse 

and worse. 

Each hit represents a 

classifier trained on a 

sample from data 

generating 

distribution.



Recap: practical issues

• Learning algorithm is only one of many steps in 

designing a ML application

• Many things can go wrong, but there are 

practical strategies for

– Improving inputs

– Evaluating

– Tuning

– Debugging

• Fundamental ML concepts:  estimation vs. 

approximation error, bias/variance trade-off


