
Practical Issues:

Features, Evaluation,

Debugging

CMSC 422

MARINE CARPUAT

marine@cs.umd.edu

mailto:marine@cs.umd.edu

Today: Practical issues

• Learning algorithm is only one of many steps in

designing a ML application

• Many things can go wrong, but there are

practical strategies for

– Improving inputs

– Evaluating

– Tuning

– Debugging

• Fundamental ML concepts: estimation vs.

approximation error

Typical Design Process

for an ML Application

Practical Issues

• “garbage in, garbage out”

– Learning algorithms can’t compensate for

useless training examples

• E.g., if all features are irrelevant

• Feature design can have bigger impact on

performance than tweaking the learning

algorithm
• E.g., feature combination

Improving Input Representations

• Feature pruning

• Feature normalization

• Example normalization

See CIML 5.3

Practical Issues: Evaluation

• So far we’ve measured classification performance

using accuracy

• But this is not a good metric when some errors

matter mode than others

– Given medical record, predict whether patient has

cancer or not

– Given a document collection and a query, find

documents in collection that are relevant to query

Practical Issues: hyperparameter tuning

with dev set vs. cross-validation

Practical Issues: Debugging!

• You’ve implemented a learning algorithm,

• You try it on some train/dev/test data

• You get really bad performance

• What’s going on?

– Is the data too noisy?

– Is the learning problem too hard?

– Is the implementation of the learning

algorithm buggy?

Strategies for Isolating

Causes of Errors

• Is the problem with generalization to test data?

– Can learner fit the training data?

– Yes: problem is in generalization to test data

– No: problem is in representation (need better features

or better data)

• Train/test mismatch?
– Try reselecting train/test by shuffling training data and

test together

Strategies for Isolating

Causes of Errors

• Is algorithm implementation correct?

– Measure loss rather than accuracy

– Hand-craft a toy dataset

• Is representation adequate?

– Can you learn if you add a cheating feature that

perfectly correlates with correct class?

• Do you have enough data?

– Try training on 80% of the training set, how much

does it hurt performance?

Formalizing Errors

The learned
classifier

set of all possible classifiers
using a fixed representation

How far is the learned
classifier f from the optimal

classifier f*?

Quality of the model
family

*

The bias/variance trade-off

• Trade-off between

– approximation error (error due to bias)

– estimation error (error due to variance)

• Example:

– Consider the always positive classifier

• Strongly biased toward predicting +1 no matter

what the input

• Low variance as a function of a random draw of the

training set

The bias/variance trade-off

illustrated

http://scott.fortmann-roe.com/docs/BiasVariance.html

Assume

Center of the target =

model that perfectly

predicts the correct

values.

As we move away

from the bulls-eye,

predictions get worse

and worse.

Each hit represents a

classifier trained on a

sample from data

generating

distribution.

Recap: practical issues

• Learning algorithm is only one of many steps in

designing a ML application

• Many things can go wrong, but there are

practical strategies for

– Improving inputs

– Evaluating

– Tuning

– Debugging

• Fundamental ML concepts: estimation vs.

approximation error, bias/variance trade-off

