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Topics

• P1 & Midterm

• CIML Chapter 7

– Linear Models
• Loss functions

• Regularization

– Gradient Descent



All Grades Posted on Canvas

• P1

– Grading questions by private message on 

piazza to Carolin and me (include Section 

number), or during Carolin’s office hours.

– Deadline: Thursday 3/29 

• Midterm

– Resubmit and regrade policy

– Deadline: Tuesday 3/27
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Midterm: Resubmit answers

• You can resubmit your answer to question(s)

– Any question you want, up to 8 points

– This is individual work, don’t seek help for others

– For T/F, give detailed justification/proof

– Grading will be strict, 0 points if justification is false

• Format: you should hand in

– printout or handwritten sheet

– Include name, session ID, UID

– your original exam

• Hand it in just before class on March 27 (Tuesday) 

(2pm) 



Midterm: Regrading requests

• In writing only

– List problems that should be regraded

– Suggest points you think you should be getting

– Justify why

• Format: you should hand in

– printout or handwritten sheet

– Include name, session ID, UID

– your original exam

• Hand it in just before class on March 27 (Tuesday) 

(2pm) 
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Topics

• P1 & Midterm

• CIML Chapter 7

– Linear Models
• Loss functions

• Regularization

– Gradient Descent



Binary classification

via hyperplanes

• A classifier is a hyperplane (w,b)

• At test time, we check on what 

side of the hyperplane 

examples fall
 𝑦 = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 + 𝑏)

• This is a linear classifier

– Because the prediction is a linear 

combination of feature values x





Learning a Linear Classifier

as an Optimization Problem

Indicator function: 1 if (.) is true, 0 otherwise

The loss function above is called the 0-1 loss

Loss function

measures how well 

classifier fits training 

data

Regularizer

prefers solutions 

that generalize 

well

Objective 

function



Learning a Linear Classifier

as an Optimization Problem

• Problem: The 0-1 loss above is NP-hard to optimize 

exactly/approximately in general

• Solution: Different loss function approximations and 

regularizers lead to specific algorithms

(e.g., perceptron, support vector machines, 

logistic regression, etc.)



The 0-1 Loss

• Small changes in w,b can lead to big 

changes in the loss value

• 0-1 loss is non-smooth, non-convex



Approximating the 0-1 loss with 

surrogate loss functions

• Examples (with b = 0)

– Hinge loss

– Log loss

– Exponential loss

• All are convex upper-

bounds on the 0-1 

loss



Approximating the 0-1 loss with 

surrogate loss functions

• Examples (with b = 0)

– Hinge loss

– Log loss

– Exponential loss

• Q: Which of these 

loss functions is not 

smooth?



Approximating the 0-1 loss with 

surrogate loss functions

• Examples (with b = 0)

– Hinge loss

– Log loss

– Exponential loss

• Q: Which of these 

loss functions is 

most sensitive to 

outliers?



Casting Linear Classification

as an Optimization Problem

Indicator function: 1 if (.) is true, 0 otherwise

The loss function above is called the 0-1 loss

Loss function

measures how well 

classifier fits training 

data

Regularizer

prefers solutions 

that generalize 

well

Objective 

function



The regularizer term

• Goal: find simple solutions  (inductive bias)

• Ideally, we want most entries of w to be zero, so prediction 

depends only on a small number of features.

• Formally, we want to minimize:

• That’s NP-hard, so we use approximations instead. 

– E.g., we encourage wd’s to be small



Norm-based Regularizers

• 𝑙𝑝 norms can be used as regularizers

Contour

plots for p = 2 p = 1 p < 1



Norm-based Regularizers

• 𝑙𝑝 norms can be used as regularizers

• Smaller p favors sparse vectors w

– i.e. most entries of w are close or equal to 0

• 𝑙2 norm: convex, smooth, easy to optimize

• 𝑙1 norm:  encourages sparse w, convex, but not 

smooth at axis points

• 𝑝 < 1 : norm becomes non convex and hard to 

optimize



Casting Linear Classification

as an Optimization Problem

Indicator function: 1 if (.) is true, 0 otherwise

The loss function above is called the 0-1 loss

Loss function

measures how well 

classifier fits training 

data

Regularizer

prefers solutions 

that generalize 

well

Objective 

function



What is the perceptron optimizing?

• Loss function is a variant of the hinge loss



Gradient descent

• A general solution for our optimization problem

Idea: take iterative steps to update parameters in the direction 

of the gradient



Gradient descent algorithm

Objective function 
to minimize

Number of steps Step size



Illustrating gradient descent

in 1-dimensional case



Recap: Linear Models

• General framework for binary classification

• Cast learning as optimization problem

• Optimization objective combines 2 terms

– loss function: measures how well classifier fits 

training data 

– Regularizer: measures how simple classifier is

• Does not assume data is linearly separable

• Lets us separate model definition from 

training algorithm (Gradient Descent)


