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lopics

e P1 & Midterm

* CIML Chapter 7

— Linear Models

* Loss functions
 Regularization

— Gradient Descent



All Grades Posted on Canvas

. P1

— Grading questions by private message on
piazza to Carolin and me (include Section
number), or during Carolin’s office hours.

— Deadline: Thursday 3/29

* Midterm
— Resubmit and regrade policy
— Deadline: Tuesday 3/27
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Midterm: Resubmit answers

* You can resubmit your answer to question(s)
— Any question you want, up to 8 points
— This is individual work, don’t seek help for others
— For T/F, give detailed justification/proof
— Grading will be strict, 0 points if justification is false

* Format: you should hand in
— printout or handwritten sheet
— Include name, session ID, UID
— your original exam

« Hand it in just before class on March 27 (Tuesday)
(2pm)



Midterm: Regrading requests

* In writing only
— List problems that should be regraded
— Suggest points you think you should be getting
— Justify why
* Format: you should hand in
— printout or handwritten sheet
— Include name, session ID, UID
— your original exam

« Hand it in just before class on March 27 (Tuesday)
(2pm)
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Binary classification
via hyperplanes

A classifier is a hyperplane (w,b)

o At test time, we check on what
side of the hyperplane

examples fall
y = sign(wlx + b)

 This is a linear classifier

— Because the prediction is a linear
combination of feature values x



TASK: BINARY CLASSIFICATION

Given:

1. An input space X
2. An unknown distribution D over X'x{—1, +1}

Compute: A function f minimizing: E .. .p|f(¥) # ]
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L ea
as a

w,b

-

ning a Linear Classifier

N Optimization Problem

N

min L(w, b) = min Zﬂ(yn(wan + b) < 0) + AR(w, b)

w,b

n=1

K Problem: The 0-1 loss above is NP-hard to optimize \
exactly/approximately in general

 Solution: Different loss function approximations and
regularizers lead to specific algorithms

(e.g., perceptron, support vector machines,

logistic regression, etc.) /

o




The 0-1 Loss

00) y(w'x +b)

« Small changes in w,b can lead to big
changes in the loss value

* 0-1loss Is non-smooth, non-convex



Approximating the 0-1loss with
surrogate loss functions

« Examples (with b = 0) |
—Hinge loss  [1 — yaw'x,]4 = max{0,1 — y,w'x,}
—Log loss  log[l + exp(—y.w'x,)]
— Exponential loss  exp(—y.w ' x,)

* All are convex upper- Lw)’| inge o
bounds on the 0-1
loss




Approximating the 0-1loss with
surrogate loss functions

« Examples (with b = 0) |
— Hinge loss  [1 — yaw ' x,]+ = max{0,1 — y,w'x,}
—Log loss  log[l + exp(—y.w'x,)]
— Exponential loss  exp(—y.w ' x,)

L(W)S ) Hinge Loss ]
25+

* Q: Which of these
loss functions is not

smooth? \ﬁ




Approximating the 0-1loss with
surrogate loss functions

« Examples (with b = 0)

— Hinge loss [1 — yaw’

Xp|+ = max{O, 1—y,w'x,}
— Log loss log[1 4 exp(—y.w ' x,)]
— Exponential loss  exp(—y.w'x,)

 Q: Which of these Lo’ g |

loss functions is
most sensitive to

outliers? &




Cast

adS all

4 )

Objective
function

1

w,b

Ng Li

-

\_

Loss function h

measures how well
classifier fits training

N P

data \/_)

N

near Classification
Optimizatio

‘oblem

4 Regularizer
prefers solutions
that generalize

< well\/_/

min L(w, b) = mitr; Zﬂ(yn(wan + b) < 0) + AR(w, b)
W n=1

H() Indicator function: 1 if (\) is true, O otherwise

The loss function above is called the 0-1 loss



The reqgularizer term

Goal: find simple solutions (inductive bias)

Ideally, we want most entries of w to be zero, so prediction
depends only on a small number of features.

Formally, we want to minimize:
D

R (w, b) = ) I(wy #0)
d=1

That's NP-hard, so we use approximations instead.
— E.g., we encourage wy's to be small



Norm-based Reqgularizers

* [, norms can be used as regularizers
wl|3 = 25:1 Wq

Wil1 = 25:1 Wzl

Wilp = (25:1 Wg)l/p

w2 w2 w2

N LN )
e N

plots for p=2 p="1 p <1




Norm-based Regularizers

[, norms can be used as regularizers

Smaller p favors sparse vectors w
— I.e. most entries of w are close or equal to 0

[, norm: convex, smooth, easy to optimize

[, norm: encourages sparse w, convex, but not
smooth at axis points

p <1 :norm becomes non convex and hard to
optimize
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What is the perceptron optimizing?

Algorithm 5 PERCEPTRONTRAIN(D, MaxlIter)

v Wy 4o, forall d=1...D // initialize weights
»b<+o // initialize bias
. for iter = 1 ... MaxlIter do

for all (x,y) € D do

A = 0w

a <— ZEZI wy X5+ Db /I compute activation for this example
if ya < o then
7 Wy < wyg+yxg, forall d=1...D // update weights
8: b<—b+y /| update bias
g end if
o end for
+: end for

= return wy, wy, ..., wp, b

 Loss function is a variant of the hinge loss
max{0, —y,(w'x, + b)}



Gradient descent

A general solution for our optimization problem

N
L I(yn(w' x, R
TIE (w, b | ; Yo(w'x, + b) < 0)+ AR(w, b)

|dea: take iterative steps to update parameters in the direction
of the gradient



Gradient descent algorithm

Obijective function
to minimize

Number of steps ] Step size ]

Algorithm 22 GRADIENTDESCENT(F, K /AVERE

: 20« {0,0,...,0) // initialize variable we are optimizing
» fork=1...Kdo

I SR Vs o /| compute gradient at current location
o 20 1) 5K gk // take a step down the gradient
5 end for

« return z®




llustrating gradient descent
in 1-dimensional case
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Recap: Linear Models

General framework for binary classification
Cast learning as optimization problem

Optimization objective combines 2 terms

— loss function: measures how well classifier fits
training data

— Reqgularizer: measures how simple classifier is
Does not assume data is linearly separable

Lets us separate model definition from
training algorithm (Gradient Descent)



