A Probabilistic View of Machine Learning (1/2)

CMSC 422

MARINE CARPUAT

marine@cs.umd.edu

Today's topics

- Bayes rule review
- A probabilistic view of machine learning
 - Joint Distributions
 - Bayes optimal classifier
- Statistical Estimation
 - Maximum likelihood estimates
 - Derive relative frequency as the solution to a constrained optimization problem

Bayes Rule

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$
 Bayes' rule

we call P(A) the "prior"

and P(A|B) the "posterior"

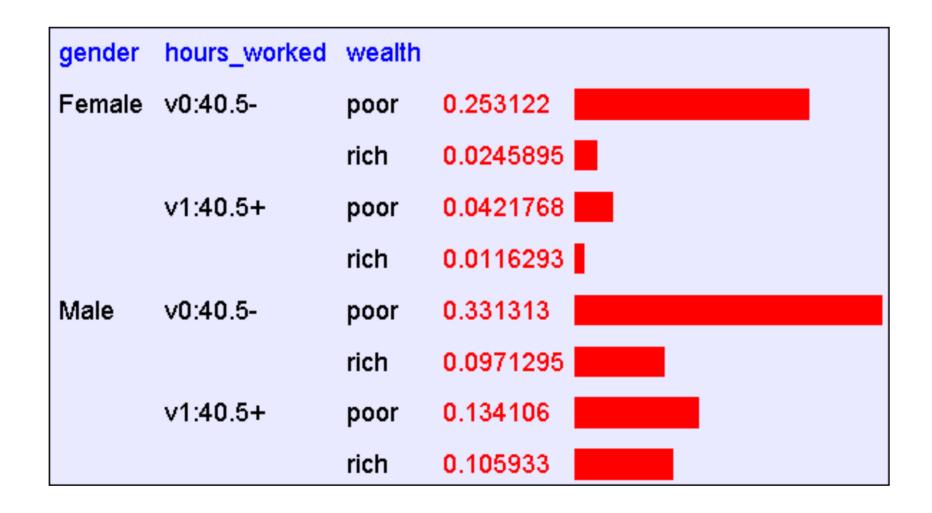
Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, **53:370-418**

...by no means merely a curious speculation in the doctrine of chances, but necessary to be solved in order to a sure foundation for all our reasonings concerning past facts, and what is likely to be hereafter.... necessary to be considered by any that would give a clear account of the strength of *analogical* or *inductive reasoning...*

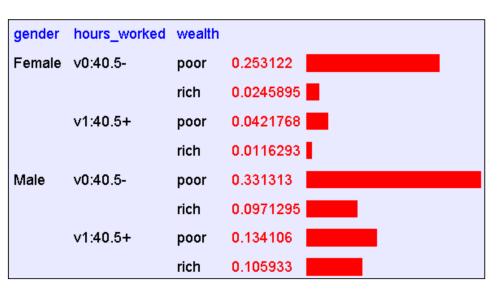
Exercise: Applying Bayes Rule

Consider the 2 random variables

A = 1 if you have the flu, 0 otherwise


B = 1 if you just coughed, 0 otherwise

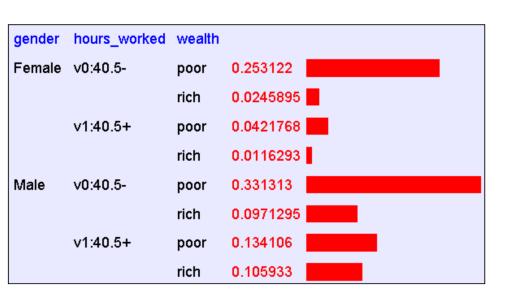
Assume


$$P(A = 1) = 0.05$$

 $P(B = 1|A = 1) = 0.8$
 $P(B = 1|A = 0) = 0.2$

• What is P(A = 1|B = 1)?

Using a Joint Distribution


Using a Joint Distribution

Given the joint
 distribution, we can find
 the probability of any
 logical expression E
 involving these variables

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

Using a Joint Distribution

Given the joint distribution, we can make inferences

- E.g., P(Male|Poor)?
- Or P(Wealth | Gender, Hours)?

Recall: Machine Learning as Function Approximation

Problem setting

- Set of possible instances X
- Unknown target function $f: X \to Y$
- Set of function hypotheses $H = \{h \mid h: X \rightarrow Y\}$

Input

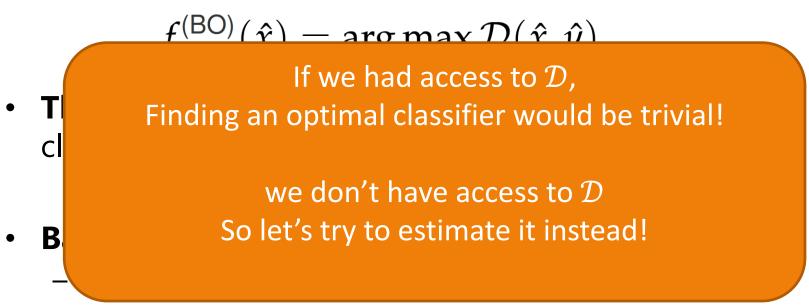
• Training examples $\{(x^{(1)},y^{(1)}),...(x^{(N)},y^{(N)})\}$ of unknown target function f

Output

• Hypothesis $h \in H$ that best approximates target function f

Recall: Formal Definition of Binary Classification (from CIML)

TASK: BINARY CLASSIFICATION


Given:

- 1. An input space \mathcal{X}
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \{-1, +1\}$

Compute: A function f minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}[f(x)\neq y]$

The Bayes Optimal Classifier

- Assume we know the data generating distribution ${\cal D}$
- We define the Bayes Optimal classifier as

Best error rate we can ever hope to achieve under zero/one loss

What does "training" mean in probabilistic settings?

- Training = estimating \mathcal{D} from a finite training set
 - We typically assume that $\ensuremath{\mathcal{D}}$ comes from a specific family of probability distributions
 - e.g., Bernouilli, Gaussian, etc
 - Learning means inferring parameters of that distributions
 - e.g., mean and covariance of the Gaussian

Training assumption: training examples are iid

Independently and Identically distributed

– i.e. as we draw a sequence of examples from \mathcal{D} , the n-th draw is independent from the previous n-1 sample

- This assumption is usually false!
 - But sufficiently close to true to be useful

How can we estimate the joint probability distribution from data?

What are the challenges?

Maximum Likelihood Estimation

Find the parameters that maximize the probability of the data

Maximum Likelihood Estimates

X=1 X=0 $P(X=1) = \theta$ $P(X=0) = 1-\theta$ (Bernoulli) Each coin flip yields a Boolean value for X

$$X \sim \text{Bernouilli: } P(X) = \theta^X (1 - \theta)^X$$

Given a data set D of iid flips, which contains α_1 ones and α_0 zeros $P_{\theta}(D) = \theta^{\alpha_1} (1 - \theta)^{\alpha_0}$

$$\hat{\theta}_{MLE} = argmax_{\theta} P_{\theta}(D) = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

Maximum Likelihood Estimation

Example: how to model a k-sided die?
 (on board)

Today's topics

- Bayes rule review
- A probabilistic view of machine learning
 - Joint Distributions
 - Bayes optimal classifier
- Statistical Estimation
 - Maximum likelihood estimates
 - Derive relative frequency as the solution to a constrained optimization problem