A Probabilistic View of Machine Learning (2/2)

CMSC 422
MARINE CARPUAT
marine@cs.umd.edu

Some slides based on material by Tom Mitchell
What we know so far...

• Bayes rule

• A probabilistic view of machine learning
 – If we know the data generating distribution, we can define the Bayes optimal classifier
 – Under iid assumption

• How to estimate a probability distribution from data?
 – Maximum likelihood estimation
Maximum Likelihood Estimates

Each coin flip yields a Boolean value for X

$$X \sim \text{Bernoulli}: P(X) = \theta^X (1 - \theta)^{1-X}$$

Given a data set D of iid flips, which contains α_1 ones and α_0 zeros

$$P_\theta(D) = \theta^{\alpha_1} (1 - \theta)^{\alpha_0}$$

$$\hat{\theta}_{MLE} = \arg\max_\theta P_\theta(D) = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$
Maximum Likelihood Estimates

K-sided die: each die roll yields an integer between 1 and K

Given a data set D of iid rolls, where side i is observed x_i times:

$$P_\theta(D) = \prod_{i=1}^{K} \theta_i^{x_i}$$

$$\hat{\theta}_{i,MLE} = \frac{x_i}{\sum_{i=1}^{K} x_i}$$
Let’s learn a classifier by learning $P(Y|X)$

- **Goal:** learn a classifier $P(Y|X)$

- **Prediction:**
 - Given an example x
 - Predict $\hat{y} = \arg\max_y P(Y = y \mid X = x)$
Parameters for $P(X,Y)$ vs. $P(Y|X)$

$Y = \text{Wealth}$

$X = \langle \text{Gender, Hours_worked} \rangle$

Joint probability distribution $P(X,Y)$

| gender | hours_worked | wealth | $P(Y|X)$ |
|---------|----------------|--------|----------|
| Female | v0:40.5- | poor | 0.253122 |
| | | rich | 0.0245895|
| | v1:40.5+ | poor | 0.0421768|
| | | rich | 0.0116293|
| Male | v0:40.5- | poor | 0.331313 |
| | | rich | 0.0971295|
| | v1:40.5+ | poor | 0.134106 |
| | | rich | 0.105933 |

Conditional probability distribution $P(Y|X)$

| Gender | HrsWorked | $P(\text{rich} | G,HW)$ | $P(\text{poor} | G,HW)$ |
|--------|-----------|-----------|-----------|
| F | <40.5 | .09 | .91 |
| F | >40.5 | .21 | .79 |
| M | <40.5 | .23 | .77 |
| M | >40.5 | .38 | .62 |
How many parameters do we need to estimate?

Suppose $X = < X_1, X_2, ... X_d >$

where X_i and Y are Boolean random variables

Q: How many parameters do we need to estimate $P(Y|X_1, X_2, ... X_d)$?
Naïve Bayes Assumption

Naïve Bayes assumes

\[P(X_1, X_2, \ldots, X_d | Y) = \prod_{i=1}^{d} P(X_i | Y) \]

i.e., that \(X_i \) and \(X_j \) are \textbf{conditionally independent} given \(Y \), for all \(i \neq j \)
Conditional Independence

- Definition:
 X is conditionally independent of Y given Z if $P(X|Y,Z) = P(X|Z)$

- Recall that X is independent of Y if $P(X|Y) = P(Y)$
Naïve Bayes classifier

\[
\hat{y} = \arg\max_y P(Y = y \mid X = x) \\
= \arg\max_y P(Y = y) P(X = x \mid Y = y) \\
= \arg\max_y P(Y = y) \prod_{i=1}^{d} P(X_i = x_i \mid Y = y)
\]

Bayes rule

+ Conditional independence assumption
How many parameters do we need to estimate?

• To describe $P(Y)$?
• To describe $P(X = < X_1, X_2, ... X_d > | Y)$?
 – Without conditional independence assumption?
 – With conditional independence assumption?

(Suppose all random variables are Boolean)
Training a Naïve Bayes classifier

Let’s assume discrete X_i and Y

TrainNaïveBayes (Data)

1. For each value y_k of Y:
 - Estimate $\pi_k = P(Y = y_k)$
2. For each value x_{ij} of X_i:
 - Estimate $\theta_{ijk} = P(X_i = x_{ij} \mid Y = y_k)$

$\theta_{ijk} = \frac{\text{# examples for which } X_i = x_{ij} \text{ and } Y = y_k}{\text{# examples for which } Y = y_k}$
Naïve Bayes Wrap-up

• An easy to implement classifier, that performs well in practice

• Subtleties
 – Often the X_i are not really conditionally independent
 – What if the Maximum Likelihood estimate for $P(X_i = x_i \mid Y = y)$ is zero?
What is the decision boundary of a Naïve Bayes classifier?
Naïve Bayes Properties

• Naïve Bayes is a linear classifier
 – See CIML for example of computation of Log Likelihood Ratio

• Choice of probability distribution is a form of inductive bias
Generative Stories

- Probabilistic models tell a fictional story explaining how our training data was created

- Example of a generative story for a multiclass classification task with continuous features

 For each example \(n = 1 \ldots N \):

 (a) Choose a label \(y_n \sim Disc(\theta) \)

 (b) For each feature \(d = 1 \ldots D \):

 i. Choose feature value \(x_{n,d} \sim Nor(\mu_{y_n,d}, \sigma_{y_n,d}^2) \)
From the Generative Story to the Likelihood Function

For each example $n = 1 \ldots N$:

(a) Choose a label $y_n \sim Disc(\theta)$

(b) For each feature $d = 1 \ldots D$:
 i. Choose feature value $x_{n,d} \sim Nor(\mu_{y_{n,d}}, \sigma^2_{y_{n,d}})$

\[
p(D) = \prod_n \theta_{y_n} \prod_d \frac{1}{\sqrt{2\pi\sigma^2_{y_{n,d}}}} \exp \left[-\frac{1}{2\sigma^2_{y_{n,d}}} (x_{n,d} - \mu_{y_{n,d}})^2 \right]
\]

for each example

choose label

choose feature value

for each feature
What you should know

• The Naïve Bayes classifier
 – Conditional independence assumption
 – How to train it?
 – How to make predictions?
 – How does it relate to other classifiers we know?

• Fundamental Machine Learning concepts
 – iid assumption
 – Bayes optimal classifier
 – Maximum Likelihood estimation
 – Generative story