## A Probabilistic View of Machine Learning (2/2)

CMSC 422 MARINE CARPUAT <u>marine@cs.umd.edu</u>

Some slides based on material by Tom Mitchell

## What we know so far...

- Bayes rule
- A probabilistic view of machine learning
  - If we know the data generating distribution, we can define the Bayes optimal classifier
  - Under iid assumption
- How to estimate a probability distribution from data?
  - Maximum likelihood estimation

## Maximum Likelihood Estimates



Each coin flip yields a Boolean value for X

X ~ Bernouilli:  $P(X) = \theta^X (1 - \theta)^X$ 

Given a data set D of iid flips, which contains  $\alpha_1$  ones and  $\alpha_0$  zeros  $P_{\theta}(D) = \theta^{\alpha_1}(1 - \theta)^{\alpha_0}$ 

$$\hat{\theta}_{MLE} = argmax_{\theta} P_{\theta}(D) = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

## Maximum Likelihood Estimates

K-sided die: each die roll yields an integer between 1 and K



Given a data set D of iid rolls, where side i is observed  $x_i$  times:

$$P_{\theta}(D) = \prod_{i=1}^{K} \theta_i^{x_i}$$

$$\hat{\theta}_{i,MLE} = \frac{x_i}{\sum_{i=1}^K x_i}$$

Let's learn a classifier by learning P(Y|X)

• Goal: learn a classifier P(Y|X)

- Prediction:
  - Given an example x

- Predict  $\hat{y} = argmax_y P(Y = y | X = x)$ 

## Parameters for P(X,Y) vs. P(Y|X)



How many parameters do we need to estimate?

Suppose  $X = \langle X_1, X_2, ..., X_d \rangle$ 

where *X<sub>i</sub>* and *Y* are Boolean random variables

Q: How many parameters do we need to estimate  $P(Y|X_1, X_2, ..., X_d)$ ?

### Naïve Bayes Assumption

#### Naïve Bayes assumes

$$P(X_1, X_2, ..., X_d | Y) = \prod_{i=1}^d P(X_i | Y)$$

i.e., that  $X_i$  and  $X_j$  are **conditionally independent** given Y, for all  $i \neq j$ 

## Conditional Independence

• Definition:

X is conditionally independent of Y given Z if P(X|Y,Z) = P(X|Z)

• Recall that X is independent of Y if P(X|Y)=P(Y)

## Naïve Bayes classifier

$$\hat{y} = argmax_{y} P(Y = y | X = x)$$
  
=  $argmax_{y} P(Y = y) P(X = x | Y = y)$   
=  $argmax_{y} P(Y = y) \prod_{i=1}^{d} P(X_{i} = x_{i} | Y = y)$ 

#### Bayes rule

+ Conditional independence assumption

How many parameters do we need to estimate?

- To describe P(Y)?
- To describe  $P(X = \langle X_1, X_2, ..., X_d \rangle | Y)$

– Without conditional independence assumption?

– With conditional independence assumption?

(Suppose all random variables are Boolean)

## Training a Naïve Bayes classifier

Let's assume discrete Xi and Y



**TrainNaïveBayes (Data)** for each value  $y_k$  of Y estimate  $\pi_k = P(Y = y_k)$ for each value  $x_{ij}$  of  $X_i$ estimate  $\theta_{ijk} = P(X_i = x_{ij} | Y = y_k)$  $\frac{\# examples for which X_i = x_{ij} and Y = y_k}{\# examples for which Y = y_k}$ 

## Naïve Bayes Wrap-up

• An easy to implement classifier, that performs well in practice

- Subtleties
  - Often the X<sub>i</sub> are not really conditionally independent
  - What if the Maximum Likelihood estimate for  $P(X_i = x_i | Y = y)$  is zero?

# What is the decision boundary of a Naïve Bayes classifier?

## Naïve Bayes Properties

- Naïve Bayes is a linear classifier
  - See CIML for example of computation of Log Likelihood Ratio
- Choice of probability distribution is a form of inductive bias



## Generative Stories

- Probabilistic models tell a fictional story explaining how our training data was created
- Example of a generative story for a multiclass classification task with continuous features

For each example  $n = 1 \dots N$ :

- (a) Choose a label  $y_n \sim Disc(\theta)$
- (b) For each feature  $d = 1 \dots D$ :
  - i. Choose feature value  $x_{n,d} \sim Nor(\mu_{y_n,d}, \sigma_{y_n,d}^2)$

# From the Generative Story to the Likelihood Function

For each example  $n = 1 \dots N$ :

- (a) Choose a label  $y_n \sim Disc(\theta)$
- (b) For each feature  $d = 1 \dots D$ :
  - i. Choose feature value  $x_{n,d} \sim Nor(\mu_{y_n,d}, \sigma_{y_n,d}^2)$



## What you should know

- The Naïve Bayes classifier
  - Conditional independence assumption
  - How to train it?
  - How to make predictions?
  - How does it relate to other classifiers we know?
- Fundamental Machine Learning concepts
  - iid assumption
  - Bayes optimal classifier
  - Maximum Likelihood estimation
  - Generative story