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* Linear algebra review:

— Matrix decomposition with eigenvectors and
eigenvalues



Unsupervised Learning

 Discovering hidden structure in data

» What algorithms do we know for
unsupervised learning?

— K-Means Clustering

* Today: how can we learn better
representations of our data points?



Dimensionality Reduction

» Goal: extract hidden lower-dimensional
structure from high dimensional datasets

* Why?
— To visualize data more easily
— To remove noise in data

— To lower resource requirements for
storing/processing data

— To improve classification/clustering



Examples of data points in D dimensional
space that can be effectively represented in
a d-dimensional subspace (d < D)



Principal Component Analysis

* Goal: Find a projection of the data onto
directions that maximize variance of the
original data set

— Intuition: those are directions in which most
information is encoded

 Definition: Principal Components are
orthogonal directions that capture most of
the variance in the data



PCA: finding principal
components

« 15t PC
— Projection of data points along 15t PC

discriminates data most along any one
direction

. 2nd pPC

— next orthogonal direction of greatest
variability

« And so on...




PCA: notation

« Data points
— Represented by matrix X of size NxD
— Let's assume data is centered

 Principal components are d vectors: vy, v,, ...v4
vi.vj = O,l :;t]' and Ui.vl' — 1

« The sample variance data projected on vector v
s Y (x; v)? = (Xv)T (Xv)



PCA formally

* Finding vector that maximizes sample
variance of projected data:

argmax, v X' Xv such that viv =1

A constrained optimization problem
» Lagrangian folds constraint into objective:
argmax, v XT Xv — A(vTv — 1)
= Solutions are vectors v such that X* Xv = v
= i.e. eigenvectors of X! X(sample covariance matrix)



PCA formally

* The eigenvalue A denotes the amount of variability
captured along dimension v

— Sample variance of projection v’ X' Xv = 2

* If we rank eigenvalues from large to small

—The 15t PC is the eigenvector of X! X associated
with largest eigenvalue

— The 2nd PC is the eigenvector of X! X associated
with 2nd largest eigenvalue



Alternative interpretation of PCA

» PCA finds vectors v such that projection on
to these vectors minimizes reconstruction
error



Resulting PCA algorithm

Algorithm 36 PCA(D, K)
. Y <— MEAN(X) // compute data mean for centering
» D+ (X — le) T (X - le) // compute covariance, 1 is a vector of ones

3 {Ar, ur} < top K eigenvalues/eigenvectors of D
» return (X—ul)U // project data using U




How to choose the
nyperparameter K?

e |.e. the number of dimensions

e (%)

I m =
C4 PC5 PCo6 PC7 PC8 PC9 PC10

* We can ignore the components of smaller
significance



An example: Eigentaces

Eigenfaces
from 7562
Images:

top left image
Is linear

combination
of rest.

Sirovich & Kirby (1987)
Turk & Pentland (1991)




PCA pros and cons

* Pros
— Eigenvector method
— No tuning of the parameters
— No local optima

 Cons
— Only based on covariance (2"9 order statistics)
— Limited to linear projections



What you should know

 Principal Components Analysis

— Goal: Find a projection of the data onto
directions that maximize variance of the
original data set

— PCA optimization objectives and resulting
algorithm

— Why this is useful!



