CMSC 422 MARINE CARPUAT <u>marine@cs.umd.edu</u>

XOR slides by Graham Neubig (CMU)

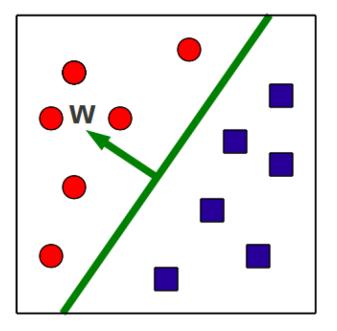
- Today
 - What are Neural Networks?
 - How to make a prediction given an input?
 - Why are neural networks powerful?
- Next time
 - how to train them?

A warm-up example

sentiment analysis for movie review

- the movie was horrible +1
- the actors are excellent -1
- the movie was not horrible -1
- he is usually an excellent actor, but not in this movie +1

Binary classification via hyperplanes



 At test time, we check on what side of the hyperplane examples fall

$$\hat{y} = sign(w^T x + b)$$

Function Approximation with Perceptron

Problem setting

• Set of possible instances X

- Each instance $x \in X$ is a feature vector $x = [x_1, ..., x_D]$

• Unknown target function $f: X \rightarrow Y$

- Y is binary valued $\{-1; +1\}$

- Set of function hypotheses $H = \{h \mid h: X \rightarrow Y\}$
 - Each hypothesis h is a hyperplane in D-dimensional space

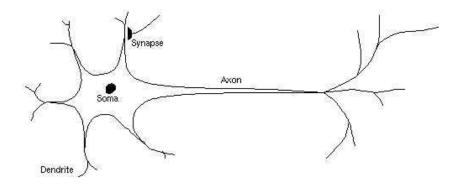
Input

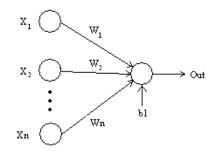
• Training examples $\{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$ of unknown target function f

Output

• Hypothesis $h \in H$ that best approximates target function f

Aside: biological inspiration





Analogy: the perceptron as a neuron

 We can think of neural networks as combination of multiple perceptrons

 Multilayer perceptron

- Why would we want to do that?
 Discover more complex decision boundaries
 - Learn combinations of features

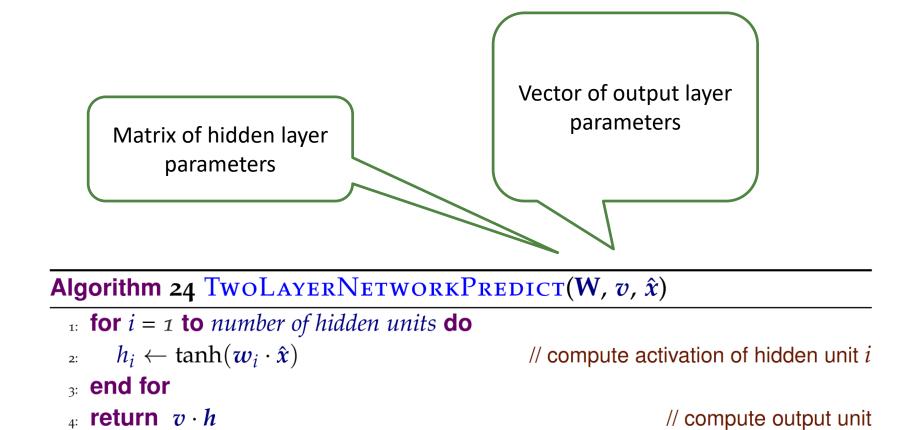
What does a 2-layer perceptron look like?

(illustration on board)

- Key concepts:
 - Input dimensionality
 - Hidden units
 - Hidden layer
 - Output layer
 - Activation functions

Activation functions (aka link functions)

- Activation functions are **non-linear** functions
 - sign function as in the perceptron
 - hyperbolic tangent and other sigmoid functions that approximate sign but are differentiable
- What happens if the hidden units use the identify function as an activation function?



What functions can we approximate with a 2 layer perceptron?

Problem setting

• Set of possible instances X

- Each instance $x \in X$ is a feature vector $x = [x_1, ..., x_D]$

• Unknown target function $f: X \rightarrow Y$

- Y is binary valued $\{-1; +1\}$

• Set of function hypotheses $H = \{h \mid h: X \rightarrow Y\}$

Input

• Training examples $\{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$ of unknown target function f

Output

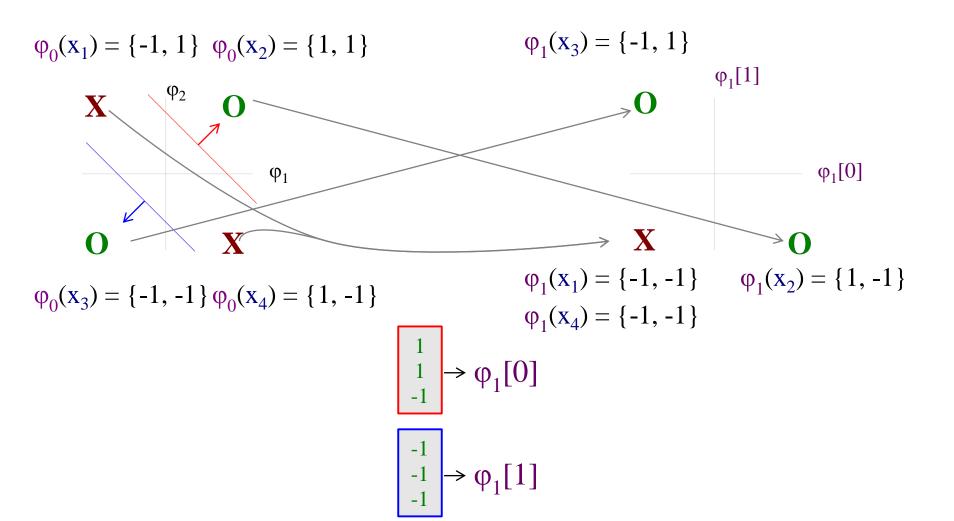
• Hypothesis $h \in H$ that best approximates target function f

Two-Layer Networks are Universal Function Approximators

• Theorem (Th 9 in CIML):

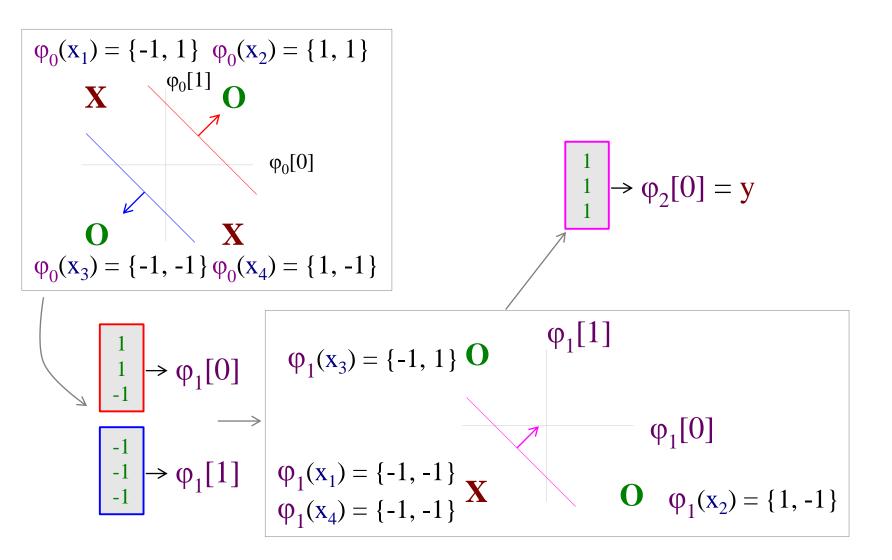
Let F be a continuous function on a bounded subset of Ddimensional space. Then there exists a two-layer neural network \hat{F} with a finite number of hidden units that approximates F arbitrarily well. Namely, for all x in the domain of F, $|F(x) - \hat{F}(x)| < \epsilon$

Example: a neural network to solve the XOR problem



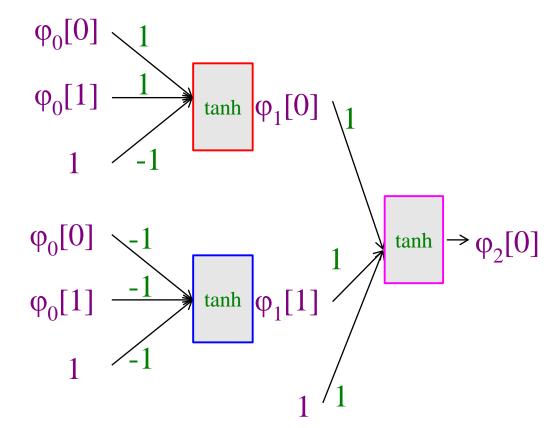
Example

In new space, the examples are linearly separable!



Example

• The final net



Discussion

- 2-layer perceptron lets us
 - Discover more complex decision boundaries than perceptron
 - Learn combinations of features that are useful for classification
- Key design question
 - How many hidden units?
 - More hidden units yield more complex functions
 - Fewer hidden units requires fewer examples to train

- Today
 - What are Neural Networks?
 - Multilayer perceptron
 - How to make a prediction given an input?
 - Simple matrix operations + non-linearities
 - Why are neural networks powerful?
 - Universal function approximators!
- Next
 - How to train them?