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Neural Networks

• Today

– What are Neural Networks?

– How to make a prediction given an input?

– Why are neural networks powerful? 

• Next time

– how to train them?



A warm-up example

sentiment analysis for movie review

• the movie was horrible +1

• the actors are excellent -1

• the movie was not horrible -1

• he is usually an excellent actor, but not in 

this movie +1



Binary classification

via hyperplanes

• At test time, we check on 

what side of the 

hyperplane examples fall

 𝑦 = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 + 𝑏)



Function Approximation

with Perceptron
Problem setting

• Set of possible instances 𝑋
– Each instance 𝑥 ∈ 𝑋 is a feature vector 𝑥 = [𝑥1, … , 𝑥𝐷]

• Unknown target function 𝑓: 𝑋 → 𝑌
– 𝑌 is binary valued {-1; +1}

• Set of function hypotheses 𝐻 = ℎ ℎ: 𝑋 → 𝑌}
– Each hypothesis ℎ is a hyperplane in D-dimensional space

Input

• Training examples { 𝑥 1 , 𝑦 1 , … 𝑥 𝑁 , 𝑦 𝑁 } of unknown 

target function 𝑓

Output

• Hypothesis ℎ ∈ 𝐻 that best approximates target function 𝑓



Aside: biological inspiration

Analogy: the 

perceptron

as a neuron



Neural Networks

• We can think of neural networks as 

combination of multiple perceptrons

– Multilayer perceptron

• Why would we want to do that?

– Discover more complex decision boundaries

– Learn combinations of features



What does a 2-layer

perceptron look like?

(illustration on board) 

• Key concepts:

– Input dimensionality

– Hidden units

– Hidden layer

– Output layer

– Activation functions 



Activation functions

(aka link functions)
• Activation functions are non-linear

functions

– sign function as in the perceptron

– hyperbolic tangent and other sigmoid 

functions that approximate sign but are 

differentiable

• What happens if the hidden units use the 

identify function as an activation function? 



Matrix of hidden layer 
parameters

Vector of output layer 
parameters



What functions can we approximate 

with a 2 layer perceptron?
Problem setting

• Set of possible instances 𝑋
– Each instance 𝑥 ∈ 𝑋 is a feature vector 𝑥 = [𝑥1, … , 𝑥𝐷]

• Unknown target function 𝑓: 𝑋 → 𝑌
– 𝑌 is binary valued {-1; +1}

• Set of function hypotheses 𝐻 = ℎ ℎ: 𝑋 → 𝑌}

Input

• Training examples { 𝑥 1 , 𝑦 1 , … 𝑥 𝑁 , 𝑦 𝑁 } of unknown 

target function 𝑓

Output

• Hypothesis ℎ ∈ 𝐻 that best approximates target function 𝑓



Two-Layer Networks are 

Universal Function Approximators

• Theorem (Th 9 in CIML):
Let F be a continuous function on a bounded subset of D-

dimensional space. Then there exists a two-layer neural 

network  𝐹 with a finite number of hidden units that 

approximates F arbitrarily well. Namely, for all x in the 

domain of F, 



Example: a neural network to 

solve the XOR problem
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Example
● In new space, the examples are linearly separable!
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Example

● The final net

tanh
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Discussion

• 2-layer perceptron lets us

– Discover more complex decision boundaries than 

perceptron

– Learn combinations of features that are useful for 

classification

• Key design question

– How many hidden units?

– More hidden units yield more complex functions

– Fewer hidden units requires fewer examples to train



Neural Networks

• Today

– What are Neural Networks?

• Multilayer perceptron

– How to make a prediction given an input?

• Simple matrix operations + non-linearities

– Why are neural networks powerful? 

• Universal function approximators!

• Next

– How to train them?


