
Neural Networks

CMSC 422

MARINE CARPUAT

marine@cs.umd.edu

XOR slides by Graham Neubig (CMU)

mailto:marine@cs.umd.edu

Neural Networks

• Today

– What are Neural Networks?

– How to make a prediction given an input?

– Why are neural networks powerful?

• Next time

– how to train them?

A warm-up example

sentiment analysis for movie review

• the movie was horrible +1

• the actors are excellent -1

• the movie was not horrible -1

• he is usually an excellent actor, but not in

this movie +1

Binary classification

via hyperplanes

• At test time, we check on

what side of the

hyperplane examples fall

 𝑦 = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 + 𝑏)

Function Approximation

with Perceptron
Problem setting

• Set of possible instances 𝑋
– Each instance 𝑥 ∈ 𝑋 is a feature vector 𝑥 = [𝑥1, … , 𝑥𝐷]

• Unknown target function 𝑓: 𝑋 → 𝑌
– 𝑌 is binary valued {-1; +1}

• Set of function hypotheses 𝐻 = ℎ ℎ: 𝑋 → 𝑌}
– Each hypothesis ℎ is a hyperplane in D-dimensional space

Input

• Training examples { 𝑥 1 , 𝑦 1 , … 𝑥 𝑁 , 𝑦 𝑁 } of unknown

target function 𝑓

Output

• Hypothesis ℎ ∈ 𝐻 that best approximates target function 𝑓

Aside: biological inspiration

Analogy: the

perceptron

as a neuron

Neural Networks

• We can think of neural networks as

combination of multiple perceptrons

– Multilayer perceptron

• Why would we want to do that?

– Discover more complex decision boundaries

– Learn combinations of features

What does a 2-layer

perceptron look like?

(illustration on board)

• Key concepts:

– Input dimensionality

– Hidden units

– Hidden layer

– Output layer

– Activation functions

Activation functions

(aka link functions)
• Activation functions are non-linear

functions

– sign function as in the perceptron

– hyperbolic tangent and other sigmoid

functions that approximate sign but are

differentiable

• What happens if the hidden units use the

identify function as an activation function?

Matrix of hidden layer
parameters

Vector of output layer
parameters

What functions can we approximate

with a 2 layer perceptron?
Problem setting

• Set of possible instances 𝑋
– Each instance 𝑥 ∈ 𝑋 is a feature vector 𝑥 = [𝑥1, … , 𝑥𝐷]

• Unknown target function 𝑓: 𝑋 → 𝑌
– 𝑌 is binary valued {-1; +1}

• Set of function hypotheses 𝐻 = ℎ ℎ: 𝑋 → 𝑌}

Input

• Training examples { 𝑥 1 , 𝑦 1 , … 𝑥 𝑁 , 𝑦 𝑁 } of unknown

target function 𝑓

Output

• Hypothesis ℎ ∈ 𝐻 that best approximates target function 𝑓

Two-Layer Networks are

Universal Function Approximators

• Theorem (Th 9 in CIML):
Let F be a continuous function on a bounded subset of D-

dimensional space. Then there exists a two-layer neural

network 𝐹 with a finite number of hidden units that

approximates F arbitrarily well. Namely, for all x in the

domain of F,

Example: a neural network to

solve the XOR problem

X

O

O

X

φ
0
(x2) = {1, 1}φ

0
(x1) = {-1, 1}

φ
0
(x4) = {1, -1}φ

0
(x3) = {-1, -1}

1

1

-1

-1

-1

-1

φ1

φ2

φ
1
[1]

φ
1
[0]

φ1[0]

φ
1
[1]

φ
1
(x1) = {-1, -1}

X O
φ

1
(x2) = {1, -1}

O

φ
1
(x3) = {-1, 1}

φ
1
(x4) = {-1, -1}

Example
● In new space, the examples are linearly separable!

X

O

O

X

φ
0
(x2) = {1, 1}φ

0
(x1) = {-1, 1}

φ
0
(x4) = {1, -1}φ

0
(x3) = {-1, -1}

1

1

-1

-1

-1

-1

φ0[0]

φ0[1]

φ
1
[1]

φ
1
[0]

φ
1
[0]

φ
1
[1]

φ
1
(x1) = {-1, -1}

X O φ
1
(x2) = {1, -1}

Oφ
1
(x3) = {-1, 1}

φ
1
(x4) = {-1, -1}

1

1

1
φ

2
[0] = y

Example

● The final net

tanh

tanh

φ
0
[0]

φ
0
[1]

1

φ
0
[0]

φ
0
[1]

1

1

1

-1

-1

-1

-1

1 1

1

1

tanh

φ
1
[0]

φ
1
[1]

φ
2
[0]

Discussion

• 2-layer perceptron lets us

– Discover more complex decision boundaries than

perceptron

– Learn combinations of features that are useful for

classification

• Key design question

– How many hidden units?

– More hidden units yield more complex functions

– Fewer hidden units requires fewer examples to train

Neural Networks

• Today

– What are Neural Networks?

• Multilayer perceptron

– How to make a prediction given an input?

• Simple matrix operations + non-linearities

– Why are neural networks powerful?

• Universal function approximators!

• Next

– How to train them?

