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• What we know so far

– What are multi-layer perceptrons?

– How to make predictions in MLPs?

– How to train MLPs?

• Today

– Practical issues with (deep) neural network 

training



Forward Propagation:
given input x, compute network output



Neural Network Training

Backpropagation algorithm 

=

Gradient descent + Chain rule 



Backprop in a 2-layer network

Compute Gradient G and g



What’s our Training Objective?

• We’ll consider the following objective

– i.e. our goal is to find parameters W, v that 

minimize squared error

• Other objectives are possible (e.g., other 

loss functions, add regularizer)



Gradient of objective 

w.r.t. output layer weights v

Error at example n:
𝑦𝑛 −  𝑦𝑛

Vector of activations of 
hidden units for 

example n



Gradient of objective

w.r.t. hidden unit weights 𝑤𝑖

(This is on one example only)

Chain rule



Backprop in a 2-layer network

Forward 

propagation

Update 

gradients

Update 

parameters



Tricky issues with

neural network training
• Sensitive to initialization

– Objective is non-convex, many local optima

– In practice: start with random values rather 

than zeros

• Many other hyperparameters

– Number of hidden units (and potentially 

hidden layers)

– Gradient descent learning rate

– Stopping criterion



Neural networks 

vs. linear classifiers

Advantages of Neural Networks:

– More expressive

– Less feature engineering

Inconvenients of Neural Networks:

– Harder to train

– Harder to interpret



Try different architectures and training 

parameters here:

http://playground.tensorflow.org



Neural Network Architectures

• We focused on a 2-layer feedforward

network

• Many other deeper architectures

– Feedforward network with more than 2 layers

– Recurrent network (i.e. network has cycles)

– Can still be trained with backpropagation

• But more practical issues arise with deeper networks



Multi-Layer Perceptron (MLP)

Image source: http://cs231n.github.io/neural-networks-1/

2 layer network 3 layer network



Computational Graphs

• Simple and powerful abstraction to 

implement forward and back-propagation
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Multi-Layer: Backpropagation
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Slide credit: Bohyung Han



We can in principle use same 

gradient descent algorithm as before

Forward 

propagation

Update 

gradients

Update 

parameters



Issues in Deep Neural Networks

• Long training time

– There are sometimes a lot of training data

– Many iterations (epochs) are typically required for 

optimization

– Computing gradients in each iteration takes too much 

time

• Overfitting

– Learned function fits training data well, but performs 

poorly on new data (high capacity model, not enough 

training data)

Slide credit: adapted from Bohyung Han



Improving on Gradient Descent:

Stochastic Gradient Descent (SGD)

• Update weights for each example

• Minibatch SGD: Update weights for a small set of 
examples

𝐸 =
1

2
𝑦𝑛 −  𝑦𝑛 2 𝒘𝑖 𝑡 + 1 = 𝒘𝑖 𝑡 − 𝜖

𝜕𝐸𝑛

𝜕𝒘𝑖

𝐸 =
1
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𝑛∈𝐵

𝑦𝑛 −  𝑦𝑛 2 𝒘𝑖 𝑡 + 1 = 𝒘𝑖 𝑡 − 𝜖
𝜕𝐸𝐵

𝜕𝒘𝑖

+ Fast, online
− Sensitive to noise

+ Fast, online
+ Robust to noise

Slide credit: Bohyung Han



Improving on Gradient Descent:

SGD with Momentum

Image: http://ruder.io/optimizing-gradient-descent/index.html#momentum

SGD w/o momentum

SGD with momentum

helps dampen 

oscillations



Improving on Gradient Descent:

SGD with Momentum

• Update based on gradients + previous direction

𝑣𝑖 𝑡 = 𝛼𝑣𝑖 𝑡 − 1 − 𝜖
𝜕𝐸

𝜕𝑤𝑖
(𝑡)

𝒘 𝑡 + 1 = 𝒘 𝑡 + 𝒗(𝑡)

+ Converge faster
+ Avoid oscillation

Slide credit: Bohyung Han



Improving the Training Objective:

Regularization/Weight Decay

• Penalize the size of the weights

𝑤𝑖 𝑡 + 1 = 𝑤𝑖 𝑡 − 𝜖
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+ Improve generalization a lot!

Slide credit: Bohyung Han



Training (Deep) Neural Networks

• Computational graphs

• Improvements to gradient descent

– Stochastic gradient descent

– Momentum

– Weight decay



Neural Network history

Perceptron

• Proposed by Frank Rosenblatt in 1957

• Real inputs/outputs, threshold activation 

function



Revival in the 1980’s

Backpropagation discovered in 1970’s but popularized in 1986

• David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams. “Learning 

representations by back-propagating errors.” In Nature, 1986.

MLP is a universal approximator

• Can approximate any non-linear function in theory, given enough 

neurons, data

• Kurt Hornik, Maxwell Stinchcombe, Halbert White. “Multilayer 

feedforward networks are universal approximators.” Neural Networks, 

1989

Generated lots of excitement and applications

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning/



Neural Networks Applied to Vision

LeNet – vision application
– LeCun, Y; Boser, B; Denker, J; Henderson, D; Howard, R; 

Hubbard, W; Jackel, L, “Backpropagation Applied to 
Handwritten Zip Code Recognition,” in Neural 
Computation, 1989

– USPS digit recognition, later check reading

Image credit: LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. “Gradient-based learning applied to 

document recognition.” Proceedings of the IEEE, 1998.



New “winter” and revival in early 2000’s

New “winter” in the early 2000’s due to

• problems with training NNs

• Support Vector Machines (SVMs), Random Forests (RF) 
– easy to train, nice theory

Revival again by 2011-2012

• Name change (“neural networks” -> “deep learning”)

• + Algorithmic developments that made training 
somewhat easier

• + Big data + GPU computing 

• = performance gains on many tasks (esp Computer 
Vision)

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-4/



Training (Deep) Neural Networks

• Computational graphs

• Improvements to gradient descent

– Stochastic gradient descent

– Momentum

– Weight decay

• Next:

– The Vanishing Gradient Problem

– Examples of current deep learning architectures 


