Deep Neural Networks

CMSC 422 MARINE CARPUAT <u>marine@cs.umd.edu</u>

Deep learning slides credit: Vlad Morariu

- What we know so far
 - What are multi-layer perceptrons?
 - How to make predictions in MLPs?
 - How to train MLPs?

• Today

Practical issues with (deep) neural network training

Forward Propagation: given input x, compute network output

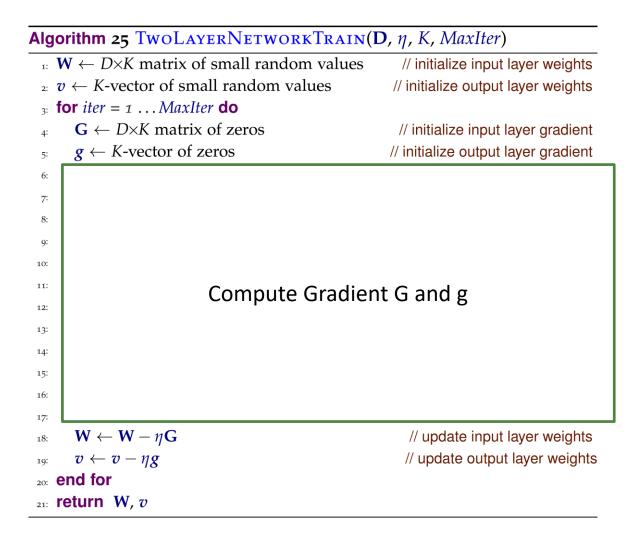
Algorithm 24 TwoLayerNetworkPredict(\mathbf{W}, v, \hat{x})

1:for i = 1 to number of hidden units do2: $h_i \leftarrow tanh(w_i \cdot \hat{x})$ 3:end for4:return $v \cdot h$ // compute output unit

Neural Network Training

Backpropagation algorithm = Gradient descent + Chain rule

Backprop in a 2-layer network



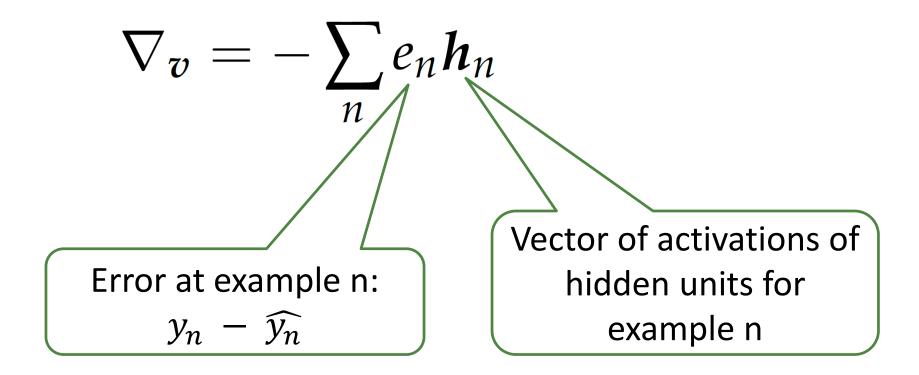
What's our Training Objective?

• We'll consider the following objective

$$\min_{\mathbf{W},\mathbf{v}} \quad \sum_{n} \frac{1}{2} \left(y_n - \sum_{i} v_i f(\boldsymbol{w}_i \cdot \boldsymbol{x}_n) \right)^2$$

- i.e. our goal is to find parameters W, v that minimize squared error
- Other objectives are possible (e.g., other loss functions, add regularizer)

Gradient of objective w.r.t. output layer weights v



Gradient of objective w.r.t. hidden unit weights w; $\mathcal{L}(\mathbf{W}) = \frac{1}{2} \left(y - \sum_{i} v_{i} f(\boldsymbol{w}_{i} \cdot \boldsymbol{x}) \right)^{2}$ Chain rule $\frac{\partial \mathcal{L}}{\partial w_i} = \frac{\partial \mathcal{L}}{\partial f_i} \frac{\partial f_i}{\partial w_i} \frac{\partial \mathcal{L}}{\partial f_i} = -\left(y - \sum_i v_i f(\boldsymbol{w}_i \cdot \boldsymbol{x})\right) v_i = -ev_i$ $\frac{\partial f_i}{\partial w_i} = f'(w_i \cdot x)x$

 $\nabla_{w_i} = -ev_i f'(w_i \cdot x) x$

(This is on one example only)

Backprop in a 2-layer network

Algorithm 25 TwoLayerNetworkTrai	ι ν(D , η, K, MaxIter)	
$\mathbf{w} \leftarrow D \times K$ matrix of small random value	es // initialize input layer weights	
$\mathbf{z}: \mathbf{v} \leftarrow K$ -vector of small random values	// initialize output layer weights	
$_{3:}$ for <i>iter</i> = 1 <i>MaxIter</i> do		
$_{4:}$ G \leftarrow <i>D</i> × <i>K</i> matrix of zeros	// initialize input layer gradient	
$_{5}$ $g \leftarrow K$ -vector of zeros	// initialize output layer gradient	
6: for all $(x.u) \in \mathbf{D}$ do		
for $i = 1$ to K do		
8: $a_i \leftarrow \boldsymbol{w}_i \cdot \hat{\boldsymbol{x}}$		Forward
$h_i \leftarrow \tanh(a_i)$	// compute activation of hidden unit i	
10: end for		propagation
$\hat{y} \leftarrow \boldsymbol{v} \cdot \boldsymbol{h}$	// compute output unit	
12: $e \leftarrow y - \hat{y}$	// compute error	
$\frac{g \leftarrow g - e\hbar}{13}$	// update gradient for output layer	
for $i = 1$ to K do		Update
$\mathbf{G}_i \leftarrow \mathbf{G}_i - ev_i(1 - \tanh^2(a_i))\mathbf{x}$	// update gradient for input layer	gradients
16: end for		gradients
17: end for		•
18: $\mathbf{W} \leftarrow \mathbf{W} - \eta \mathbf{G}$	// update input layer weights	Update
19: $v \leftarrow v - \eta g$	// update output layer weights	parameters
20: end for		parameters
21: return W, v		

Tricky issues with neural network training

- Sensitive to initialization
 - Objective is non-convex, many local optima
 - In practice: start with random values rather than zeros
- Many other hyperparameters
 - Number of hidden units (and potentially hidden layers)
 - Gradient descent learning rate
 - Stopping criterion

Neural networks vs. linear classifiers

Advantages of Neural Networks:

- More expressive
- Less feature engineering

Inconvenients of Neural Networks:

- Harder to train
- Harder to interpret

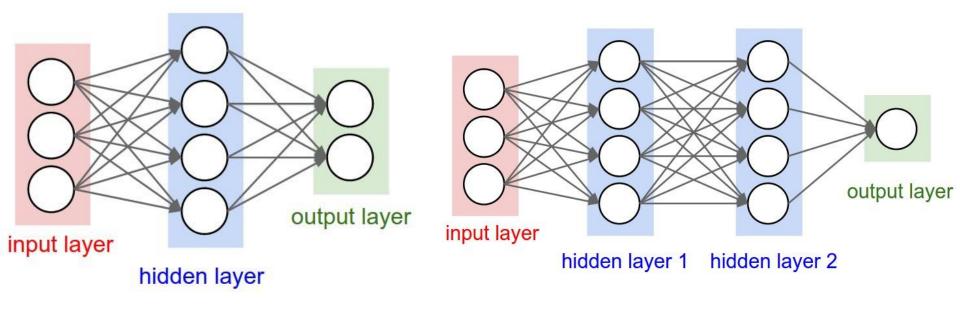
Try different architectures and training parameters here:

http://playground.tensorflow.org

Neural Network Architectures

- We focused on a 2-layer feedforward network
- Many other deeper architectures
 - Feedforward network with more than 2 layers
 - Recurrent network (i.e. network has cycles)
 - Can still be trained with backpropagation
 - But more practical issues arise with deeper networks

Multi-Layer Perceptron (MLP)



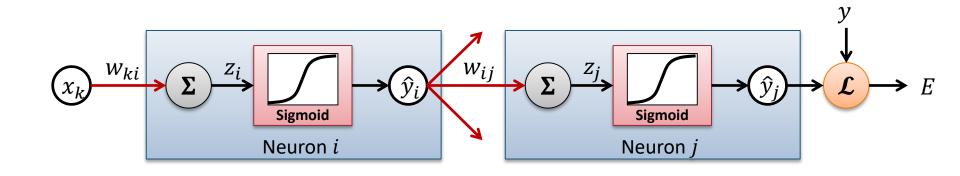
2 layer network

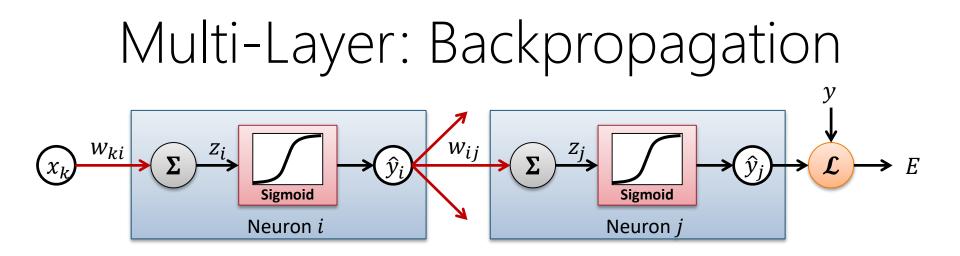
3 layer network

Image source: http://cs231n.github.io/neural-networks-1/

Computational Graphs

• Simple and powerful abstraction to implement forward and back-propagation





$$\frac{\partial E}{\partial z_j} = \frac{d\hat{y}_j}{dz_j} \frac{\partial E}{\partial \hat{y}_j}$$

$$\frac{\partial E}{\partial \hat{y}_{i}} = \sum_{j} \frac{dz_{j}}{d\hat{y}_{i}} \frac{\partial E}{\partial z_{j}} = \sum_{j} w_{ij} \frac{\partial E}{\partial z_{j}} = \sum_{j} w_{ij} \frac{d\hat{y}_{j}}{dz_{j}} \frac{\partial E}{\partial \hat{y}_{j}}$$
$$\frac{\partial E}{\partial w_{ki}} = \sum_{n} \frac{\partial z_{i}^{n}}{\partial w_{ki}} \frac{d\hat{y}_{i}^{n}}{dz_{i}^{n}} \frac{\partial E}{\partial \hat{y}_{i}^{n}} = \sum_{n} \frac{\partial z_{i}^{n}}{\partial w_{ki}} \frac{d\hat{y}_{i}^{n}}{dz_{i}^{n}} \sum_{j} w_{ij} \frac{d\hat{y}_{j}^{n}}{dz_{j}^{n}} \frac{\partial E}{\partial \hat{y}_{j}^{n}}$$

Slide credit: Bohyung Han

We can in principle use same gradient descent algorithm as before

Algorithm 25 TwoLayerNetworkTrai	N(D , η, K, MaxIter)	
$\mathbf{w} \leftarrow D \times K$ matrix of small random value	es // initialize input layer weights	
$_{2:} v \leftarrow K$ -vector of small random values	// initialize output layer weights	
$_{3:}$ for iter = 1 MaxIter do		
$_{4:}$ G \leftarrow <i>D</i> × <i>K</i> matrix of zeros	// initialize input layer gradient	
$_{5}$ $g \leftarrow K$ -vector of zeros	// initialize output layer gradient	
6: for all $(x,y) \in \mathbf{D}$ do		
for $i = 1$ to K do		
8: $a_i \leftarrow \boldsymbol{w}_i \cdot \hat{\boldsymbol{x}}$		Forward
9: $h_i \leftarrow \tanh(a_i)$	// compute activation of hidden unit i	
10: end for		propagation
$\hat{y} \leftarrow \boldsymbol{v} \cdot \boldsymbol{h}$	// compute output unit	
$e \leftarrow y - \hat{y}$	// compute error	
13: $g \leftarrow g - eh$	// update gradient for output layer	1
for $i = 1$ to K do		Update
$\mathbf{G}_i \leftarrow \mathbf{G}_i - ev_i(1 - \tanh^2(a_i))\mathbf{x}$	// update gradient for input layer	gradients
16: end for		gradients
17: end for		•
18: $\mathbf{W} \leftarrow \mathbf{W} - \eta \mathbf{G}$	// update input layer weights	Update
19: $v \leftarrow v - \eta g$	// update output layer weights	parameters
20: end for		parameters
21: return W, v		

Issues in Deep Neural Networks

- Long training time
 - There are sometimes a lot of training data
 - Many iterations (epochs) are typically required for optimization
 - Computing gradients in each iteration takes too much time
- Overfitting
 - Learned function fits training data well, but performs poorly on new data (high capacity model, not enough training data)

Improving on Gradient Descent: Stochastic Gradient Descent (SGD)

• Update weights for each example $E = \frac{1}{2}(y^n - \hat{y}^n)^2 \qquad w_i(t+1) = w_i(t) - \epsilon \frac{\partial E^n}{\partial w_i}$

+ Fast, online- Sensitive to noise

Minibatch SGD: Update weights for a small set of examples

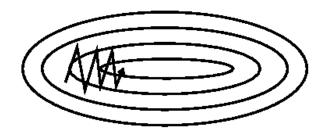
$$E = \frac{1}{2} \sum_{n \in B} (y^n - \hat{y}^n)^2 \qquad \mathbf{w}_i(t+1) = \mathbf{w}_i(t) - \epsilon \frac{\partial E^B}{\partial \mathbf{w}_i}$$

+ Fast, online+ Robust to noise

Slide credit: Bohyung Han

Improving on Gradient Descent: SGD with Momentum

SGD w/o momentum



SGD with momentum helps dampen oscillations

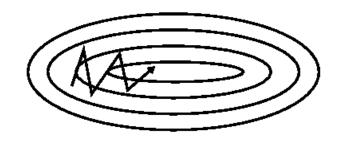


Image: http://ruder.io/optimizing-gradient-descent/index.html#momentum

Improving on Gradient Descent: SGD with Momentum

• Update based on gradients + previous direction

$$v_i(t) = \alpha v_i(t-1) - \epsilon \frac{\partial E}{\partial w_i}(t)$$

$$\boldsymbol{w}(t+1) = \boldsymbol{w}(t) + \boldsymbol{v}(t)$$

+ Converge faster+ Avoid oscillation

Slide credit: Bohyung Han

Improving the Training Objective: Regularization/Weight Decay

• Penalize the size of the weights

$$C = E + \frac{\lambda}{2} \sum_{i} w_i^2$$

$$w_i(t+1) = w_i(t) - \epsilon \frac{\partial C}{\partial w_i} = w_i(t) - \epsilon \frac{\partial E}{\partial w_i} - \lambda w_i$$

+ Improve generalization a lot!

Slide credit: Bohyung Han

Training (Deep) Neural Networks

- Computational graphs
- Improvements to gradient descent
 - Stochastic gradient descent
 - Momentum
 - Weight decay

Neural Network history

Perceptron

- Proposed by Frank Rosenblatt in 1957
- Real inputs/outputs, threshold activation function

Revival in the 1980's

Backpropagation discovered in 1970's but popularized in 1986

• David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams. "Learning representations by back-propagating errors." In Nature, 1986.

MLP is a universal approximator

- Can approximate any non-linear function in theory, given enough neurons, data
- Kurt Hornik, Maxwell Stinchcombe, Halbert White. "Multilayer feedforward networks are universal approximators." Neural Networks, 1989

Generated lots of excitement and applications

Neural Networks Applied to Vision

LeNet – vision application

- LeCun, Y; Boser, B; Denker, J; Henderson, D; Howard, R; Hubbard, W; Jackel, L, "Backpropagation Applied to Handwritten Zip Code Recognition," in Neural Computation, 1989
- USPS digit recognition, later check reading

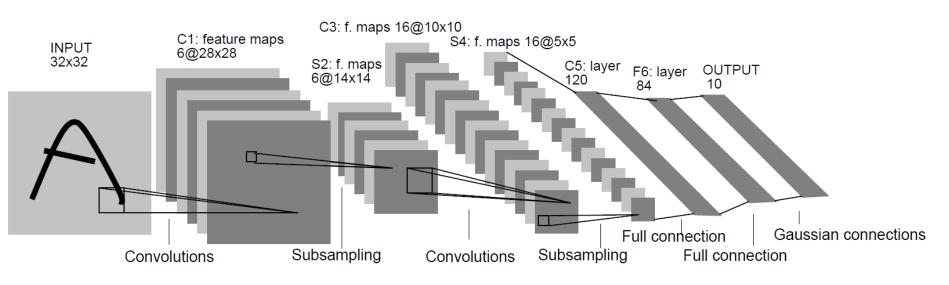


Image credit: LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 1998.

New "winter" and revival in early 2000's

New "winter" in the early 2000's due to

- problems with training NNs
- Support Vector Machines (SVMs), Random Forests (RF) – easy to train, nice theory

Revival again by 2011-2012

- Name change ("neural networks" -> "deep learning")
- + Algorithmic developments that made training somewhat easier
- + Big data + GPU computing
- = performance gains on many tasks (esp Computer Vision)

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-4/

Training (Deep) Neural Networks

- Computational graphs
- Improvements to gradient descent
 - Stochastic gradient descent
 - Momentum
 - Weight decay
- Next:
 - The Vanishing Gradient Problem
 - Examples of current deep learning architectures