Kernel Methods

CMSC 422
MARINE CARPUAT
marine@cs.umd.edu

Slides credit: Piyush Rai
Beyond linear classification

• Problem: linear classifiers
 – Easy to implement and easy to optimize
 – But limited to linear decision boundaries

• What can we do about it?
 – Neural networks
 • Very expressive but harder to optimize (non-convex objective)
 – Today: Kernels
Kernel Methods

• Goal: keep advantages of linear models, but make them capture non-linear patterns in data!

• How?
 – By mapping data to higher dimensions where it exhibits linear patterns
Classifying non-linearly separable data with a linear classifier: examples

Non-linearly separable data in 1D

Becomes linearly separable in new 2D space defined by the following mapping:

\[x \rightarrow \{ x, x^2 \} \]
Classifying non-linearly separable data with a linear classifier: examples

Non-linearly separable data in 2D

Becomes linearly separable in the 3D space defined by the following transformation:

\[\mathbf{x} = \{x_1, x_2\} \rightarrow \mathbf{z} = \{x_1^2, \sqrt{2}x_1x_2, x_2^2\} \]
Defining feature mappings

• Map an original feature vector \(x = \langle x_1, x_2, x_3, \ldots, x_D \rangle \) to an expanded version \(\phi(x) \)

• Example: quadratic feature mapping represents feature combinations

\[
\phi(x) = \langle 1, 2x_1, 2x_2, 2x_3, \ldots, 2x_D, \\
x_1^2, x_1 x_2, x_1 x_3, \ldots, x_1 x_D, \\
x_2 x_1, x_2^2, x_2 x_3, \ldots, x_2 x_D, \\
x_3 x_1, x_3 x_2, x_3^2, \ldots, x_2 x_D, \\
\ldots, \\
x_D x_1, x_D x_2, x_D x_3, \ldots, x_D^2 \rangle
\]
Feature Mappings

- **Pros:** can help turn non-linear classification problem into linear problem

- **Cons:** “feature explosion” creates issues when training linear classifier in new feature space
 - More computationally expensive to train
 - More training examples needed to avoid overfitting
Kernel Methods

• Goal: keep advantages of linear models, but make them capture non-linear patterns in data!

• How?
 – By mapping data to higher dimensions where it exhibits linear patterns
 – By rewriting linear models so that the mapping never needs to be explicitly computed
The Kernel Trick

- Rewrite learning algorithms so they only depend on **dot products between two examples**

- Replace dot product $\phi(x)^{\top} \phi(z)$ by **kernel function** $k(x, z)$ which computes the dot product **implicitly**
Example of Kernel function

Consider two examples $\mathbf{x} = \{x_1, x_2\}$ and $\mathbf{z} = \{z_1, z_2\}$
Let’s assume we are given a function k (kernel) that takes as inputs \mathbf{x} and \mathbf{z}

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^\top \mathbf{z})^2$$
$$= (x_1 z_1 + x_2 z_2)^2$$
$$= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2$$
$$= (x_1^2, \sqrt{2}x_1 x_2, x_2^2)^\top (z_1^2, \sqrt{2} z_1 z_2, z_2^2)$$
$$= \phi(\mathbf{x})^\top \phi(\mathbf{z})$$

The above k implicitly defines a mapping ϕ to a higher dimensional space

$$\phi(\mathbf{x}) = \{x_1^2, \sqrt{2}x_1 x_2, x_2^2\}$$
Another example of Kernel Function (from CIML)

\[\phi(x) = \langle 1, 2x_1, 2x_2, 2x_3, \ldots, 2x_D, \]
\[x_1^2, x_1x_2, x_1x_3, \ldots, x_1x_D, \]
\[x_2x_1, x_2^2, x_2x_3, \ldots, x_2x_D, \]
\[x_3x_1, x_3x_2, x_3^2, \ldots, x_2x_D, \]
\[\ldots, \]
\[x_Dx_1, x_Dx_2, x_Dx_3, \ldots, x_D^2 \rangle \]

What is the function \(k(x,z) \) that can implicitly compute the dot product \(\phi(x) \cdot \phi(z) \) ?

\[
\phi(x) \cdot \phi(z) = 1 + x_1z_1 + x_2z_2 + \cdots + x_Dz_D + x_1^2z_1^2 + \cdots + x_1x_Dz_1z_D + \\
\cdots + x_Dx_1z_Dz_1 + x_Dx_2z_Dz_2 + \cdots + x_D^2z_D^2
\]
\[= 1 + 2 \sum_d x_dz_d + \sum_d \sum_e x_dx_ez_dz_e \] \((9.2) \)
\[= 1 + 2x \cdot z + (x \cdot z)^2 \] \((9.3) \)
\[= (1 + x \cdot z)^2 \] \((9.4) \)
\[= (1 + x \cdot z)^2 \] \((9.5) \)
Kernels: Formally defined

Recall: Each kernel k has an associated feature mapping ϕ

ϕ takes input $x \in \mathcal{X}$ (input space) and maps it to \mathcal{F} ("feature space")

Kernel $k(x, z)$ takes two inputs and gives their similarity in \mathcal{F} space

$$
\begin{align*}
\phi : & \mathcal{X} \to \mathcal{F} \\
k : & \mathcal{X} \times \mathcal{X} \to \mathbb{R}, \quad k(x, z) = \phi(x)^\top \phi(z)
\end{align*}
$$

\mathcal{F} needs to be a vector space with a dot product defined on it

Also called a Hilbert Space
Kernels: Mercer’s condition

- Can *any* function be used as a kernel function?
 - No! it must satisfy Mercer’s condition.

For k to be a kernel function

- There must exist a Hilbert Space \mathcal{F} for which k defines a dot product
- The above is true if K is a positive definite function

$$ \int dx \int dz f(x) k(x, z)f(z) > 0 $$

For all square integrable functions f
Kernels: Constructing combinations of kernels

Let k_1, k_2 be two kernel functions then the following are as well

- $k(x, z) = k_1(x, z) + k_2(x, z)$: direct sum
- $k(x, z) = \alpha k_1(x, z)$: scalar product
- $k(x, z) = k_1(x, z)k_2(x, z)$: direct product
Commonly Used Kernel Functions

Linear (trivial) Kernel:

\[k(x, z) = x^\top z \] (mapping function \(\phi \) is identity - no mapping)

Quadratic Kernel:

\[k(x, z) = (x^\top z)^2 \quad \text{or} \quad (1 + x^\top z)^2 \]

Polynomial Kernel (of degree \(d \)):

\[k(x, z) = (x^\top z)^d \quad \text{or} \quad (1 + x^\top z)^d \]

Radial Basis Function (RBF) Kernel:

\[k(x, z) = \exp[-\gamma \|x - z\|^2] \]
The Kernel Trick

• Rewrite learning algorithms so they only depend on dot products between two examples

• Replace dot product $\phi(x)^T \phi(z)$ by kernel function $k(x, z)$ which computes the dot product implicitly
“Kernelizing” the perceptron

• Naïve approach: let’s explicitly train a perceptron in the new feature space

Algorithm 28 \textsc{PerceptronTrain}(D, MaxIter)

1: \(w \leftarrow 0, b \leftarrow 0 \) \hspace{1cm} // initialize weights and bias
2: \textbf{for} iter = 1 \ldots MaxIter \textbf{do}
3: \hspace{1cm} \textbf{for all} \((x, y) \in D\) \textbf{do}
4: \hspace{2cm} \(a \leftarrow w \cdot \phi(x) + b \) \hspace{1cm} // compute activation for this example
5: \hspace{2cm} \textbf{if} \ ya \leq 0 \textbf{then}
6: \hspace{3cm} w \leftarrow w + y \phi(x) \hspace{1cm} // update weights
7: \hspace{3cm} b \leftarrow b + y \hspace{1cm} // update bias
8: \hspace{2cm} \textbf{end if}
9: \hspace{1cm} \textbf{end for}
10: \textbf{end for}
11: \textbf{return} \ w, b

Can we apply the Kernel trick?
Not yet, we need to rewrite the algorithm using dot products between examples.
“Kernelizing” the perceptron

- Perceptron Representer Theorem

“During a run of the perceptron algorithm, the weight vector w can always be represented as a linear combination of the expanded training data”

Proof by induction
(in CIML)
“Kernelizing” the perceptron

• We can use the perceptron representer theorem to compute activations as a **dot product** between examples.

\[
\mathbf{w} \cdot \phi(x) + b = \left(\sum_n \alpha_n \phi(x_n) \right) \cdot \phi(x) + b
\]

\[
= \sum_n \alpha_n \left[\phi(x_n) \cdot \phi(x) \right] + b
\]

(9.6) definition of \(\mathbf{w} \)

(9.7) dot products are linear
“Kernelizing” the perceptron

Algorithm 29 \texttt{KernelizedPerceptronTrain(D, MaxIter)}

```
1: $\alpha \leftarrow 0$, $b \leftarrow 0$ \hspace{1cm} // initialize coefficients and bias
2: \textbf{for} iter = 1 \ldots MaxIter \textbf{do}
3: \hspace{1cm} \textbf{for} all $(x_n, y_n) \in D$ \textbf{do}
4: \hspace{2cm} $a \leftarrow \sum m \alpha_m \phi(x_m) \cdot \phi(x_n) + b$ \hspace{1cm} // compute activation for this example
5: \hspace{2cm} \textbf{if} $y_n a \leq 0$ \textbf{then}
6: \hspace{3cm} $\alpha_n \leftarrow \alpha_n + y_n$ \hspace{1cm} // update coefficients
7: \hspace{3cm} $b \leftarrow b + y$ \hspace{1cm} // update bias
8: \hspace{2cm} \textbf{end if}
9: \hspace{1cm} \textbf{end for}
10: \textbf{end for}
11: \textbf{return} $\alpha, b$
```

- Same training algorithm, but doesn’t explicitly refers to weights w anymore only depends on dot products between examples
- We can apply the kernel trick!
Kernel Methods

• Goal: keep advantages of linear models, but make them capture non-linear patterns in data!

• How?
 – By mapping data to higher dimensions where it exhibits linear patterns
 – By rewriting linear models so that the mapping never needs to be explicitly computed
Discussion

• Other algorithms can be kernelized:
 – See CIML for K-means
 – We’ll talk about Support Vector Machines next

• Do Kernels address all the downsides of “feature explosion”?
 – Helps reduce computation cost during training
 – But overfitting remains an issue
What you should know

• Kernel functions
 – What they are, why they are useful, how they relate to feature combination

• Kernelized perceptron
 – You should be able to derive it and implement it