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Back to linear classification

 Last time: we've seen that kernels can help
capture non-linear patterns in data while
keeping the advantages of a linear classifier

» Today: Support Vector Machines
— A hyperplane-based classification algorithm
— Highly influential

— Backed by solid theoretical grounding (Vapnik &
Cortes, 1995)

— Easy to kernelize



The Maximum Margin Principle

 Find the hyperplane with maximum
separation margin on the training data




Margin of a data set D

margin(D, w, b) — min, ,yep y(w-x+b) ifw se}?arates D (3.8
—00 otherwise
Distance between the
hyperplane (w,b) and
the nearest pointin D
margin(D) = sup margin(D, w, b) (3.9)

w,b

Largest attainable margin on D




Support Vector Machine (SVM)

A hyperplane based linear classifier defined by w and b
Prediction rule: y = sign(w'x + b)
Given: Training data {(x1,y1),..., (Xn, yn)}

Goal: Learn w and b that achieve the maximum margin



Characterizing the margin

Let's assume the entire training data is correctly classified
by (w,b) that achieve the maximum margin
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Characterizing the margin
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The Optimization Problem

Maximizing the margin v = minimizing ||w|| (the norm)

Our optimization problem would be:

2
Minimize f(w,b) = H";”

subject to J/n(wan—i—b) > 1, n=1,...,N




Large Margin = Good Generalization

* |Intuitively, large margins mean good
generalization
— Large margin => small ||wl|
— small [|w|| => reqularized/simple solutions

 (Learning theory gives a more formal
justification)



Solving the SVM Optimization
Problem

Our optimization problem is:

2

Minimize f(w,b) = ”“;H
subject to 1< y,,(wan + b), n=1,...,N

Introducing Lagrange Multipliers o, (n ={1,..., N}), one for each
constraint, leads to the Lagrangian:
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N
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Minimize L(w,b,«) =

subjectto a, >0; n=1,....N




Solving the SVM Optimization
Problem

Take (partial) derivatives of Lp w.r.t. w, b and set them to zero

JLp OLp
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Substituting these in the Primal Lagrangian Lp gives the Dual Lagrangian

Maximize Lp(w Zan—— Z O mOnYmYn(X xn)

m,n=1

subject to Zoenyn =0, a,=20; n=1,....N
n=1




Solving the SVM Optimization
Problernr

Take (partial) derivatives of Lp w.r.t. w, b and set them to zero
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Substituting these in the Primal Lagrangian Lp gives the Dual Lagrangian

Maximize Lp(w Zan — = Z O mOnYmYn(X xn)
m,n=1
Quadratic
Program for tO Z anyn = O, an Z (:),| n — 17 IR N
which off-the-

shelf solvers

exist



SVM: the solution!

Once we have the a,'s, w and b can be computed as:

N
W =D pe1 @nYnXn
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Note: Most a,’s in the solution are zero (sparse solution)

@ Reason: Karush-Kuhn-Tucker (KKT) conditions wesbot
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@ «p is non-zero only if x, lies on one of the two / LR

O class -1
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margin boundaries, i.e., for which yn(wan +b)=1
@ These examples are called support vectors

@ Support vectors “support” the margin boundaries



Support Vector Machines

* Find the max margin linear classifier for a dataset

 Discovers “support vectors”, the training
examples that “support” the margin boundaries

* Hard margin vs soft margin SVM

— Hard margin: assme the data is linearly separable
(today's lecture)

— Soft margin: more general case (next time!)



