Support Vector Machines (II)

CMSC 422 MARINE CARPUAT <u>marine@cs.umd.edu</u>

Slides credit: Piyush Rai

What we know about SVM so far

REVIEW

The Maximum Margin Principle

• Find the hyperplane with maximum separation margin on the training data

Support Vector Machine (SVM)

- A hyperplane based linear classifier defined by **w** and b Prediction rule: $y = sign(\mathbf{w}^T \mathbf{x} + b)$
- **Given:** Training data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$

Goal: Learn w and b that achieve the maximum margin

Characterizing the margin

Let's assume the entire training data is correctly classified by (**w**,b) that achieve the maximum margin

- Assume the hyperplane is such that
 - $\mathbf{w}^T \mathbf{x}_n + b \geq 1$ for $y_n = +1$
 - $\mathbf{w}^T \mathbf{x}_n + b \leq -1$ for $y_n = -1$
 - Equivalently, $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1$ $\Rightarrow \min_{1 \le n \le N} |\mathbf{w}^T \mathbf{x}_n + b| = 1$
 - The hyperplane's margin:

$$\gamma = \min_{1 \le n \le N} \frac{|\mathbf{w}^T \mathbf{x}_n + b|}{||\mathbf{w}||} = \frac{1}{||\mathbf{w}||}$$

Solving the SVM Optimization Problem (assuming linearly separable data)

Our optimization problem is:

Minimize
$$f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2}$$

subject to $1 \le y_n(\mathbf{w}^T \mathbf{x}_n + b), \quad n = 1, \dots, N$

Introducing Lagrange Multipliers α_n ($n = \{1, ..., N\}$), one for each constraint, leads to the Lagrangian:

$$\begin{array}{ll} \text{Minimize} & L(\mathbf{w}, b, \alpha) = \frac{||\mathbf{w}||^2}{2} + \sum_{n=1}^{N} \alpha_n \{1 - y_n(\mathbf{w}^T \mathbf{x}_n + b)\} \\ \text{subject to} & \alpha_n \geq 0; \quad n = 1, \dots, N \end{array}$$

Solving the SVM Optimization Problem (assuming linearly separable data)

SVM: the solution! (assuming linearly separable data)

Once we have the α_n 's, **w** and *b* can be computed as:

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$$

$$b = -\frac{1}{2} \left(\min_{n:y_n=+1} \mathbf{w}^T \mathbf{x}_n + \max_{n:y_n=-1} \mathbf{w}^T \mathbf{x}_n \right)$$

Note: Most α_n 's in the solution are zero (sparse solution)

- Reason: Karush-Kuhn-Tucker (KKT) conditions
- For the optimal α_n 's

$$\alpha_n\{1-y_n(\mathbf{w}^T\mathbf{x}_n+b)\}=0$$

- α_n is non-zero only if \mathbf{x}_n lies on one of the two margin boundaries, i.e., for which $y_n(\mathbf{w}^T \mathbf{x}_n + b) = 1$
- These examples are called support vectors
- Support vectors "support" the margin boundaries

What if the data is not separable?

GENERAL CASE SVM SOLUTION

SVM in the non-separable case

- no hyperplane can separate the classes perfectly
- We still want to find the max margin hyperplane, but
 - We will allow some training examples to be misclassified
 - We will allow some training examples to fall within the margin region

SVM in the non-separable case

Recall: For the separable case (training loss = 0), the constraints were:

$$y_n(\mathbf{w}^T\mathbf{x}_n+b)\geq 1 \quad \forall n$$

For the non-separable case, we relax the above constraints as:

$$y_n(\mathbf{w}^T\mathbf{x}_n+b) \geq 1-\boldsymbol{\xi}_n \quad \forall n$$

 ξ_n is called slack variable (distance \mathbf{x}_n goes past the margin boundary) $\xi_n \ge 0, \forall n$, misclassification when $\xi_n > 1$

SVM Optimization Problem

Non-separable case: We will allow misclassified training examples

- .. but we want their number to be minimized
 - \Rightarrow by minimizing the sum of slack variables $\left(\sum_{n=1}^{N} \xi_n\right)$

The optimization problem for the non-separable case

Minimize
$$f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2} + C \sum_{n=1}^{N} \xi_n$$

subject to $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1 - \xi_n, \quad \xi_n \ge 0 \qquad n = 1, \dots, N$

- C hyperparameter dictates which term dominates the minimization
- Small C => prefer large margins and allows more misclassified examples
- Large C => prefer small number of misclassified examples, but at the expense of a small margin

Introducing Lagrange Multipliers...

Our optimization problem is:

Minimize
$$f(\mathbf{w}, b, \xi) = \frac{||\mathbf{w}||^2}{2} + C \sum_{n=1}^{N} \xi_n$$

subject to $1 \le y_n(\mathbf{w}^T \mathbf{x}_n + b) + \xi_n, \quad 0 \le \xi_n \qquad n = 1, \dots, N$

Introducing Lagrange Multipliers α_n , β_n $(n = \{1, ..., N\})$, for the constraints, leads to the Primal Lagrangian:

Minimize
$$L_P(\mathbf{w}, b, \xi, \alpha, \beta) = \frac{||\mathbf{w}||^2}{2} + C\sum_{n=1}^N \xi_n + \sum_{n=1}^N \alpha_n \{1 - y_n(\mathbf{w}^T \mathbf{x}_n + b) - \xi_n\} - \sum_{n=1}^N \beta_n \xi_n$$

subject to $\alpha_n, \beta_n \ge 0; \quad n = 1, \dots, N$

Terms in red are those that were not there in the separable case!

Formulating the dual objective

Take (partial) derivatives of L_P w.r.t. **w**, b, ξ_n and set them to zero

$$\frac{\partial L_P}{\partial \mathbf{w}} = \mathbf{0} \Rightarrow \mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n, \quad \frac{\partial L_P}{\partial b} = \mathbf{0} \Rightarrow \sum_{n=1}^{N} \alpha_n y_n = \mathbf{0}, \quad \frac{\partial L_P}{\partial \xi_n} = \mathbf{0} \Rightarrow \mathbf{C} - \alpha_n - \beta_n = \mathbf{0}$$

Using $C - \alpha_n - \beta_n = 0$ and $\beta_n \ge 0 \Rightarrow \alpha_n \le C$

Substituting these in the Primal Lagrangian L_P gives the Dual Lagrangian

Maximize
$$L_D(\mathbf{w}, b, \boldsymbol{\xi}, \alpha, \boldsymbol{\beta}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n(\mathbf{x}_m^T \mathbf{x}_n)$$

subject to $\sum_{n=1}^{N} \alpha_n y_n = 0$, $0 \le \alpha_n \le C$; $n = 1, \dots, N$

Note

- Given α the solution for w, b has the same form as in the separable case
- α is again sparse, nonzero α_n 's correspond to support vectors

Support Vectors in the Non-Separable Case

We now have 3 types of support vectors!

Lying on the margin boundaries w^Tx + b = −1 and w^Tx + b = +1 (ξ_n = 0)
 Lying within the margin region (0 < ξ_n < 1) but still on the correct side
 Lying on the wrong side of the hyperplane (ξ_n ≥ 1)

Notes on training

- Solving the quadratic problem is O(N^3)
 Can be prohibitive for large datasets
- But many options to speed up training
 Approximate solvers
 - Learn from what we know about training linear models

Recall: Learning a Linear Classifier as an Optimization Problem

Recall: Learning a Linear Classifier as an Optimization Problem

$$\min_{\mathbf{w},b} L(\mathbf{w},b) = \min_{\mathbf{w},b} \sum_{n=1}^{N} \mathbb{I}(y_n(\mathbf{w}^T \mathbf{x}_n + b) < 0) + \lambda R(\mathbf{w},b)$$

- **Problem:** The 0-1 loss above is NP-hard to optimize exactly/approximately in general
- **Solution:** Different loss function approximations and regularizers lead to specific algorithms (e.g., perceptron, support vector machines, etc.)

Recall: Approximating the 0-1 loss with surrogate loss functions

• Examples (with b = 0) - Hinge loss $[1 - y_n \mathbf{w}^T \mathbf{x}_n]_+ = \max\{0, 1 - y_n \mathbf{w}^T \mathbf{x}_n\}$ - Log loss $\log[1 + \exp(-y_n \mathbf{w}^T \mathbf{x}_n)]$

- Exponential loss $\exp(-y_n \mathbf{w}^T \mathbf{x}_n)$

 All are convex upperbounds on the 0-1 loss

What is the SVM loss function?

No penalty $(\xi_n = 0)$ if $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1$ Linear penalty $(\xi_n = 1 - y_n(\mathbf{w}^T \mathbf{x}_n + b))$ if $y_n(\mathbf{w}^T \mathbf{x}_n + b) < 1$ It's precisely the hinge loss $\max\{0, 1 - y_n(\mathbf{w}^T \mathbf{x}_n + b)\}$

Recall: What is the perceptron optimizing?

Algorithm 5 PERCEPTRONTRAIN(**D**, *MaxIter*) 1: $w_d \leftarrow o$, for all $d = 1 \dots D$ // initialize weights 2: $b \leftarrow 0$ // initialize bias $_{3:}$ for *iter* = 1 ... *MaxIter* do for all $(x,y) \in \mathbf{D}$ do 4: $a \leftarrow \sum_{d=\tau}^{D} w_d x_d + b$ // compute activation for this example 5: if $ya \le o$ then 6: $w_d \leftarrow w_d + yx_d$, for all $d = 1 \dots D$ // update weights 7: $b \leftarrow b + y$ // update bias 8: end if 9: end for 10: **tr: end for** ^{12:} **return** w_0, w_1, \ldots, w_D, b

 Loss function is a variant of the hinge loss max{0, -y_n(w^Tx_n + b)}

SVM + KERNELS

Kernelized SVM training

Recall the SVM dual Lagrangian:

Maximize
$$L_D(\mathbf{w}, b, \xi, \alpha, \beta) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n(\mathbf{x}_m^T \mathbf{x}_n)$$

subject to $\sum_{n=1}^{N} \alpha_n y_n = 0$, $0 \le \alpha_n \le C$; $n = 1, \dots, N$

Replacing $\mathbf{x}_m^T \mathbf{x}_n$ by $\phi(\mathbf{x}_m)^\top \phi(\mathbf{x}_n) = k(\mathbf{x}_m, \mathbf{x}_n) = K_{mn}$, where k(.,.) is some suitable kernel function

Maximize
$$L_D(\mathbf{w}, b, \xi, \alpha, \beta) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n K_{mn}$$

subject to $\sum_{n=1}^{N} \alpha_n y_n = 0$, $0 \le \alpha_n \le C$; $n = 1, \dots, N$

SVM now learns a linear separator in the kernel defined feature space ${\cal F}$

Kernelized SVM prediction

Prediction for a test example **x** (assume b = 0)

$$y = sign(\mathbf{w}^{\top}\mathbf{x}) = sign(\sum_{n \in SV} \alpha_n y_n \mathbf{x}_n^{\top}\mathbf{x})$$

SV is the set of support vectors (i.e., examples for which $\alpha_n > 0$) Replacing each example with its feature mapped representation $(\mathbf{x} \rightarrow \phi(\mathbf{x}))$

$$y = sign(\sum_{n \in SV} \alpha_n y_n \phi(\mathbf{x}_n)^\top \phi(\mathbf{x})) = sign(\sum_{n \in SV} \alpha_n y_n k(\mathbf{x}_n, \mathbf{x}))$$

The weight vector for the kernelized case can be expressed as:

$$\mathbf{w} = \sum_{n \in SV} \alpha_n y_n \phi(\mathbf{x}_n) = \sum_{n \in SV} \alpha_n y_n k(\mathbf{x}_n, .)$$

Note

- Kernelized SVM needs the support vectors at test time!
- While unkernelized SVM can just store w

Example: decision boundary of an SVM with an RBF Kernel

What you should know

- What are Support Vector Machines
- How to train SVMs
 - Which optimization problem we need to solve
- Geometric interpretation
 - What are support vectors and what is their relationship with parameters **w**,b?
- How do SVM relate to the general formulation of linear classifiers
- Why/how can SVMs be kernelized