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REVIEW

What we know about SVM so far



The Maximum Margin Principle

• Find the hyperplane with maximum 

separation margin on the training data 



Support Vector Machine (SVM)



Characterizing the margin

Let’s assume the entire training data is correctly classified 

by (w,b) that achieve the maximum margin



Solving the SVM Optimization Problem 

(assuming linearly separable data)



Solving the SVM Optimization Problem 

(assuming linearly separable data)

A Quadratic Program for 
which many off-the-shelf 

solvers exist



SVM: the solution!
(assuming linearly separable data)



GENERAL CASE SVM SOLUTION

What if the data is not separable?



SVM in the non-separable case

• no hyperplane can separate the classes perfectly

• We still want to find the max margin hyperplane, 

but

– We will allow some training examples to be 

misclassified

– We will allow some training examples to fall within

the margin region



SVM in the non-separable case



SVM Optimization Problem

C  hyperparameter dictates which term dominates the minimization
• Small C => prefer large margins and allows more misclassified 

examples
• Large C => prefer small number of misclassified examples, but at 

the expense of a small margin



Introducing Lagrange Multipliers…

Terms in red are those that were 
not there in the separable case!



Formulating the dual objective

Note
• Given 𝛼 the solution for w, b has the same form as in the 

separable case
• 𝛼 is again sparse, nonzero 𝛼𝑛’s correspond to support vectors



Support Vectors

in the Non-Separable Case
We now have 3 types of support vectors!

(1)

(2)

(3)



Notes on training

• Solving the quadratic problem is O(N^3)

– Can be prohibitive for large datasets

• But many options to speed up training

– Approximate solvers

– Learn from what we know about training 

linear models



Recall: Learning a Linear Classifier

as an Optimization Problem

Indicator function: 1 if (.) is true, 0 otherwise

The loss function above is called the 0-1 loss

Loss function

measures how well 

classifier fits training 

data

Regularizer

prefers solutions 

that generalize 

well

Objective 

function



Recall: Learning a Linear Classifier

as an Optimization Problem

• Problem: The 0-1 loss above is NP-hard to optimize 

exactly/approximately in general

• Solution: Different loss function approximations and 

regularizers lead to specific algorithms

(e.g., perceptron, support vector machines, etc.)



Recall: Approximating the 0-1 loss 

with surrogate loss functions

• Examples (with b = 0)

– Hinge loss

– Log loss

– Exponential loss

• All are convex upper-

bounds on the 0-1 

loss



What is the SVM loss function?



Recall: What is the perceptron 

optimizing?

• Loss function is a variant of the hinge loss



SVM + KERNELS



Kernelized SVM training



Kernelized SVM prediction

Note
• Kernelized SVM needs the 

support vectors at test time!
• While unkernelized SVM can 

just store w



Example: decision boundary of an 

SVM with an RBF Kernel



What you should know

• What are Support Vector Machines

• How to train SVMs

– Which optimization problem we need to solve

• Geometric interpretation

- What are support vectors and what is their 

relationship with parameters w,b?

• How do SVM relate to the general formulation of 

linear classifiers

• Why/how can SVMs be kernelized


