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What we know about SVM so far

REVIEW



The Maximum Margin Principle

 Find the hyperplane with maximum
separation margin on the training data




Support Vector Machine (SVM)

A hyperplane based linear classifier defined by w and b
Prediction rule: y = sign(w'x + b)
Given: Training data {(x1,y1),..., (Xn, yn)}

Goal: Learn w and b that achieve the maximum margin



Characterizing the margin

Let's assume the entire training data is correctly classified
by (w,b) that achieve the maximum margin
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Solving the SVM Optimization Problem
(assuming linearly separable data)

Our optimization problem is:

2
Minimize f(w,b) = ”“;”
subject to 1< y,,(wan + b), n=1,...,N

Introducing Lagrange Multipliers o, (n ={1,..., N}), one for each
constraint, leads to the Lagrangian:
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Minimize L(w,b,«) =

subjectto a, >0; n=1,....N




Solving the SVM Optimization Problem
(assuming linearly separable data)

A Quadratic Program for N Il N
which many off-the-shelf U p YnX P _ 0= Qnyn =0
solvers exist ; A 9b nz:; o

Substituting thes the Primal Lagrangian Lp gives the Dual Lagrangian

Maximize Lp(w, b, a) Zazn — = Z O mOnYmYn(X xn)
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SVM: the solution!

(assuming linearly separable data)

Once we have the a,'s, w and b can be computed as:

N
W =D pe1 @nYnXn

T

_ 1 : T

Note: Most a,’s in the solution are zero (sparse solution)
@ Reason: Karush-Kuhn-Tucker (KKT) conditions

@ For the optimal a,'s
an{l — yo(w'x, + b)} =0

@ «p is non-zero only if x, lies on one of the two
margin boundaries, i.e., for which yn(wan +b)=1

@ These examples are called support vectors

@ Support vectors “support” the margin boundaries



GENERAL CASE SVM SOLUTION



SVM in the non-separable case

* no hyperplane can separate the classes perfectly

« We still want to find the max margin hyperplane,
but

— We will allow some training examples to be
misclassified

— We will allow some training examples to fall within
the margin region



SVM in the non-separable case

/7
wx+b=0 ,

Recall: For the separable case (training loss = 0), the constraints were:

vo(w'x, +b)>1 Vn
For the non-separable case, we relax the above constraints as:

yn(W'x, + b) >1-¢, Vn

¢, is called slack variable (distance x,, goes past the margin boundary)

&n, > 0,Vn, misclassification when &, > 1




SVM Optimization Problem

Non-separable case: We will allow misclassified training examples

@ .. but we want their number to be minimized
— by minimizing the sum of slack variables (3" ¢,)

The optimization problem for the non-separable case

C hyperparameter dictates which term dominates the minimization

* Small C => prefer large margins and allows more misclassified
examples

e Large C => prefer small number of misclassified examples, but at
the expense of a small margin




Introducing Lagrange Multipliers...

Our optimization problem is:

Minimize f(w,b, &) = +Can

subject to 1< yn(w X, + b)+§n, 0<¢, n=1,...,N

Introducing Lagrange Multipliers o, 8, (n = {1,..., N}), for the constraints,
leads to the Primal Lagrangian:

Minimize Lp(w, b, &, a, 3) = ||

'I'Zan{l ynwxn+b —&n}— Zﬁfn

subject to a,, 3, >0, n=1,...,N

Terms in red are those that were
not there in the separable case!




Note

Formulating the dual objective

Take (partial) derivatives of Lp w.r.t. w, b, &, and set them to zero
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Using C —a,—B,=0and 3,>0=0a, < C
Substituting these in the Primal Lagrangian Lp gives the Dual Lagrangian

Maximize Lp(w, b, &, a,3) = Zan—— Z ozmoznymy,,(x Xn)

m,n=1
N
subject to Zanynzo, 0<a,<C; n=1,....N

* Given «a the solution for w, b has the same form as in the

separable case
* (isagain sparse, nonzero a,’s correspond to support vectors




Support Vectors
in the Non-Separable Case

We now have 3 types of support vectors!

(1) Lying on the margin boundaries w'x + b= —1and w'x+ b= +1 (¢, = 0)
(2) Lying within the margin region (0 < &, < 1) but still on the correct side

(3) Lying on the wrong side of the hyperplane (¢, > 1)



Notes on training

 Solving the quadratic problem is O(N*3)

— Can be prohibitive for large datasets

» But many options to speed up training
— Approximate solvers

— Learn from what we know about training
linear models
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Recall: Learning a Linear Classifier
as an Optimization Problem

N

in L =min Y I(y.(w'x, R
min (w, b) TJEZ (vo(w'x, 4+ b) <0)+ AR(w, b)

n=1

4 N

* Problem: The 0-1 loss above is NP-hard to optimize
exactly/approximately in general

 Solution: Different loss function approximations and
regularizers lead to specific algorithms

(e.g., perceptron, support vector machines, etc.)

/
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What is the SVM loss function?

No penalty (£, = 0) if y.(w'x, + b) > 1
Linear penalty (&, =1 — yo(w'x, + b)) if yo(w'x, + b) < 1
It's precisely the hinge loss max{0,1 — y,(w'x, + b)}



Recall: What is the perceptron
optimizing?

Algorithm 5 PERCEPTRONTRAIN(D, Maxlter)

v wy 4o, forall d=1...D // initialize weights
= b+ o0 // initialize bias
;. for iter = 1 ... MaxlIter do

for all (x,y) € D do

+

5: a<— ZE:I wy x5 +Db // compute activation for this example
6: if ya < o then

7 wy < wyg +yxg, forall d=1...D // update weights
8: b<—b+y // update bias
o end if

o end for

1 end for

= return wgy, wy, ..., wp, b

 Loss function is a variant of the hinge loss
max{0, —y,(w'x, + b)}



SVM + KERNELS



Kernelized SVM training

Recall the SVM dual Lagrangian:

N N
1 T
Maximize L W,b, ,a,ﬁ — Xp — — XmAXn¥YmVn Xan
p(w, b, &, a, B) ; > m;I YimYn(XmXn)
N
subject to Za”:o, 0<a,<C;, n=1,...,N
n=1

Replacing x! x, by ¢(xm) ' @(xn) = k(Xm, Xn) = Kmnn, where k(.,.) is some
suitable kernel function

N N
1
Maximize Lp(w, b, &, o, 3) = E Oy — > E AmnYmYnKmn
n=1

m,n=1
N
subject to Zanynzo, 0<a,<C; n=1,...,N

n=1

SVM now learns a linear separator in the kernel defined feature space F



Kernelized SVM prediction

Prediction for a test example x (assume b = 0)

y = sign(w ' x) = sign( Z QUnYnXn | X)
neSV

SV is the set of support vectors (i.e., examples for which o, > 0)
Replacing each example with its feature mapped representation (x — ¢(x))

y = sign( Z anynqb(xn)Td)(x)) = sign( Z anynk(Xn, x))
neSV neSVv
The weight vector for the kernelized case can be expressed as:
w = Z QnYn®(Xn) Z anyYnk(Xn, .)

neSVvV neSvV
Note

e Kernelized SVM needs the

support vectors at test time!
While unkernelized SVM can
just store w
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What you should know

What are Support Vector Machines

How to train SVMs
— Which optimization problem we need to solve
Geometric interpretation

- What are support vectors and what is their
relationship with parameters w,b?

How do SVM relate to the general formulation of
linear classifiers

Why/how can SVMs be kernelized



