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Last week: introducing 
machine learning

What does “learning by example” mean?

Classification tasks

Learning requires examples + inductive bias
Generalization vs. memorization

Formalizing the learning problem
Function approximation
Learning as minimizing expected loss0poo



Supervised Learning

Input
! ∈ #

An item !
drawn from an 
input space #

Output
y ∈ %

An item y
drawn from an 
output space %

System
y = '(!)

Consider systems that apply a function '() to 
input items ! and return outputs * = '(!).



Supervised Learning

Input
! ∈ #

An item !
drawn from an 
input space #

Output
y ∈ %

An item y
drawn from an 
output space %

System
y = '(!)

In (supervised) machine learning, we deal 
with systems whose '(!) is learned from 
examples.



Supervised Learning

Input
! ∈ #

An item !
drawn from an 
input space #

Output
y ∈ %

An item y
drawn from an 
output space %

System
y = '(!)

We typically use machine learning when 
the function '(!) we want the system to 
apply is unknown to us, and we cannot 
“think” about it.



Supervised Learning

Input
! ∈ #

An item !
drawn from an 

instance space #

Output
y ∈ %

An item &
drawn from a 
label space %

Learned Model
y = ((!)

Target function
y = +(!)



Supervised Learning: Training

Labeled
Training Data

!train

("#, %1)
("(, %2)

⋮
("+, %,)

Learned
model
-(")

Learning 
Algorithm

Given the training examples in !train

The learner returns a model -(")



Supervised Learning: Testing

Labeled
Test Data
!test

("#′, &1′)
(")′, &2′)

⋮
(",′, &-′)



Supervised Learning: Testing

Labeled
Test Data
!test

("#′, &1′)
(")′, &2′)

⋮
(",′, &-′)

Raw
Test Data
.test

"#′
")′
⋮
",′

Test
Labels
/test

&1′
&2′
⋮
&-′



Supervised Learning: Testing

• Apply the model to the raw test data
• Evaluate by comparing predicted labels 

against the test labels

Raw
Test Data
!test

"#′
"%′
⋮
"'′

Learned
model
((")

Test
Labels
+test

,1′
,2′
⋮
,/′

Predicted
Labels
(	(! test )

(("#′ )
(("%′)
⋮

(("'′)

Can we use the test data otherwise?



Learning formally

• Given: examples (", $(")) of unknown function $
• Find: A good approximation of $
• " provides some representation of the input 

Ø Feature extraction: the process of mapping a domain element 
into a representation.

Ø " ∈ 0,1 ), " ∈ ℝ)

• The target function $() (label)
Ø $ " ∈ {−1,+1} Binary classification
Ø $ " ∈ 1,2,3, … , 2 − 1 Multi-class classification
Ø $ " ∈ ℝ Regression



Learning formally - continued

• Hypothesis space
Ø Set of possible instances X = {$ ∈ &}
Ø Set of possible outputs Y = {y ∈ *}
Ø The set of function hypotheses that provide some mapping 

from the input to output space + = ℎ	 	ℎ: $ → y, $ ∈ &, y ∈ *}
Ø Size of hypothesis space



Machine Learning 
as Function Approximation

• Problem setting
Ø Set of possible instancesX = {$ ∈ &}
Ø Unknown target function (: Y = {y ∈ ,}
Ø Set of function hypotheses - = ℎ	 	ℎ: $ → y, $ ∈ &, y ∈ ,}

• Input
Ø Training examples { $ 2 , 3 2 , … $ 5 , 3 5 } of unknown target 

function (
• Output

Ø Hypothesis ℎ	 ∈ -	that best approximates target function (



Formalizing induction:
Loss Function

!(#, %(&)) where #	is the truth and % & 	is the 
system’s prediction

e.g.	! #, %(&)	 = 	 *0					,%	# = %(&)
1							./ℎ123,41

Captures our notion of what is important to learn



Formalizing induction:
Data generating distribution

Where does the data come from?

• Data generating distribution
A probability distribution ! over (#, %) pairs

• We don’t know what ! is!
We only get a random sample from it: our training data



Formalizing induction:
Expected loss

• ! should make good predictions
• as measured by loss "
• on future examples that are also drawn from #

• Formally
• $	, the expected loss of !	over # with respect to " should be 

small
$ ≜ ' (,* ~, "(., !(/)) = 	∑ # /, . "(., !(/))((,*)



Formalizing induction:
Training error
• We can’t compute expected loss because we don’t know what !

is

• We only have a sample of !
• training examples { # $ , & $ , … # ( , & ( }

• All we can compute is the training error

*̂ ≜ 	. 1
0 1(&

3 , 4(# 3 ))
(

36$



Formalizing Induction

• Given
• a loss function !
• a sample from some unknown data distribution "

• Our task is to compute a function f that has low 
expected error over " with respect to !.
# $,& ~( !(*, +(,)) = 		 0 " ,, * !(*, +(,))

($,&)



Today: Decision Trees

• What is a decision tree?

• How to learn a decision tree from data?

• What is the inductive bias?

• Generalization?



An example training set



A decision tree
to decide whether to play tennis



Decision Trees

• Representation
Ø Each internal node tests a feature
Ø Each branch corresponds to a feature value
Ø Each leaf node assigns a classification

v or a probability distribution over classifications

• Decision trees represent functions that map 
examples in X to classes in Y



Exercise

How would you represent the following 
Boolean functions with decision trees?

! ∩ #

! ∪ #

Take home exercise: ! ∩ # ∪ (& ∩ ¬()



Today: Decision Trees

• What is a decision tree?

• How to learn a decision tree from data?

• What is the inductive bias?

• Generalization?



Function Approximation
with Decision Trees

• Problem setting
Ø Set of possible instances !

v Each instance "	 ∈ ! is a feature vector " = ["', … , "*]
Ø Unknown target function ,: !	 → /

v / is discrete valued 
Ø Set of function hypotheses 0 = ℎ	 	ℎ: !	 → /}

v Each hypothesis ℎ is a decision tree
• Input

Ø Training examples { 4 ' , 5 ' , … 4 6 , 5 6 } of unknown target 
function ,

• Output
Ø Hypothesis ℎ	 ∈ 0	that best approximates target function ,



Decision Trees Learning

• Finding the hypothesis ℎ	 ∈ $
Ø That minimizes training error
Ø Or maximizes training accuracy

• How? 
Ø $	 is too large for exhaustive search!
Ø We will use a heuristic search algorithm which

v Picks questions to ask, in order
v Such that classification accuracy is maximized



Top-down Induction
of Decision Trees

CurrentNode = Root

DTtrain (examples for CurrentNode, features at 
CurrentNode):

1. Find F, the “best” decision feature for next 
node

2. For each value of F, create new descendant of 
node

3. Sort training examples to leaf nodes
4. If training examples perfectly classified

Stop
Else
Recursively apply DTtrain over new leaf nodes 



How to select the “best” feature?

• A good feature is a feature that lets us 
make correct classification decision

• One way to do this:
Ø select features based on their classification 

accuracy

• Let’s try it on the PlayTennis dataset



Let’s build a decision tree 
using features O, T, H, W



Partitioning examples according to 
Humidity feature



Partitioning examples:
H  = Normal



Partitioning examples:
H = Normal and W = Strong



Decision Trees

• Can represent any Boolean Function
• Can be viewed as a way to compactly represent a lot of 

data.  
• The evaluation of the Classifier is easy
• Clearly, given data, there are many ways to represent it 

as a decision tree.
• Learning a good representation from data is the 

challenge.



Will I play tennis today?

• Features
Ø Outlook: {Sun, Overcast, Rain}

Ø Temperature: {Hot, Mild, Cool}

Ø Humidity: {High, Normal, Low}

Ø Wind: {Strong, Weak}

• Labels
Ø Binary classification task: Y = {+, -}



Will I play tennis today?

O T H W Play?
1 S H H W -

2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

Ø Outlook: S(unny),
O(vercast),
R(ainy)

Ø Temperature: H(ot), 
M(ild), 
C(ool)

Ø Humidity: H(igh), 
N(ormal), 
L(ow)

Ø Wind: S(trong), 
W(eak)



Will I play tennis today?

O T H W Play?
1 S H H W -

2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

Ø Data is processed in Batch 
(i.e. all the data available)

Ø Recursively build a decision 
tree top down.



Top-down Induction
of Decision Trees

CurrentNode = Root

DTtrain (examples for CurrentNode, features at 
CurrentNode):

1. Find F, the “best” decision feature for next 
node

2. For each value of F, create new descendant of 
node

3. Sort training examples to leaf nodes
4. If training examples perfectly classified

Stop
Else
Recursively apply DTtrain over new leaf nodes 



Picking the Root Attribute

• The goal is to have the resulting decision tree 
as small as possible (Occam’s Razor)
Ø However, finding the minimal decision tree 

consistent with the data is NP-hard
• The recursive algorithm is a greedy heuristic 

search for a simple tree, but cannot guarantee 
optimality.

• The main decision in the algorithm is the 
selection of the next attribute to condition on.



Picking the Root Attribute

Training Data with 2 Boolean attributes (A,B)
( (A=0,B=0), -): 50 examples
( (A=0,B=1), -): 50 examples
( (A=1,B=0), -): 0 examples
( (A=1,B=1), +): 100 examples

What should be the first attribute we select?

Splitting on A: we get purely labeled 
nodes

Splitting on B: we don’t get purely 
labeled nodes



Picking the Root Attribute

Training Data with 2 Boolean attributes (A,B)
( (A=0,B=0), -): 50 examples
( (A=0,B=1), -): 50 examples
( (A=1,B=0), -): 3 examples
( (A=1,B=1), +): 100 examples

Trees looks structurally similar; which attribute should we choose?



Another feature selection criterion: 
Entropy
• Used in the ID3 algorithm [Quinlan, 1963]

Ø pick feature with smallest entropy to split the 
examples at current iteration

• Entropy measures impurity of a sample of 
examples





Sample Entropy

High Entropy –
High level of uncertainty

Low Entropy –
Low level of uncertainty



Information Gain

• The information gain of an attribute ! is the 
expected reduction in entropy caused by 
partitioning on this attribute
"!#$ %, ! = ($)*+,- % − / |%1|

|%| ($)*+,-(%1)1∈156789(5)
Ø Original set is %.	
Ø 	%1	 is the subset of % for which attribute ! has value <. 
Ø The entropy of partitioning the data is calculated by weighing the 

entropy of each partition by its size relative to the original set.
v Partitions of low entropy (imbalanced splits) lead to high gain

Ø Take Home Exercise: go back and check which of the A, B splits is 
better. 



Will I play tennis today?

O T H W Play?
1 S H H W -

2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

Ø Outlook: S(unny),
O(vercast),
R(ainy)

Ø Temperature: H(ot), 
M(ild), 
C(ool)

Ø Humidity: H(igh), 
N(ormal), 
L(ow)

Ø Wind: S(trong), 
W(eak)



Will I play tennis today?

O T H W Play?
1 S H H W -

2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

Ø Current entropy:
P = 9/14
N =5/14

Ø H(Y)=
-(9/14) log2(9/14)
-(5/14) log2(5/14)

≈ 0.94



Will I play tennis today?

O T H W Play?
1 S H H W -

2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

Ø Outlook = sunny:
p=2/5 n =3/5 HS=0.971

Ø Outlook =overcast:
p=4/4 n =0 HO=0

Ø Outlook = rainy:
p=3/5 n =2/5 HR=0.971

Ø Expected entropy
5
14 ×0.971 + 4

14 ×0

+ 5
14 ×0.971 = +. ,-.

Ø Information gain:
0.940-0.694 = 0.246



Will I play tennis today?

O T H W Play?
1 S H H W -

2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

Ø Humidity = sunny:
p=3/7 n =4/7 HH=0.985

Ø Humidity =overcast:
p=6/7 n =1/7 HO=0.592

Ø Expected entropy
7
14 ×0.985 + 7

14 ×0.592
= -. ../0

Ø Information gain:
0.940-0.7785 = 0.1515



Which feature to split on?

O T H W Play?
1 S H H W -

2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

Ø Information gain:
Outlook: 0.246
Humidity: 0.151
Wind: 0.048
Temperature: 0.029

ü Split on Outlook



An Illustrative Example (III)
O T H W Play?

1 S H H W -

2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

Continue until:

• Every attribute is included in path, or,

• All examples in the leaf have same label



An Illustrative Example (IV)



An Illustrative Example (V)



induceDecisionTree(S)

1. Does ! uniquely define a class?
if all " ∈ ! have the same label y: return !;

2. Find the feature with the most information gain:
% = argmax,-.%/(!, 2,)

3. Add children to !	:
for 5 in Values(2,):

!6 = " ∈ ! 2, = 5
addChild(!	, !6)
induceDecisionTree(!6)

return S;



An Illustrative Example (VI)



Hypothesis Space in Decision Tree 
Induction
• Conduct a search of the space of decision 

trees which can represent all possible 
discrete functions. (pros and cons)

• Goal: to find the best decision tree 
• Finding a minimal decision tree consistent 

with a set of data is NP-hard.
• Performs a greedy heuristic search: hill 

climbing without backtracking.
• Makes statistically based decisions using 

all data.



A decision tree to distinguish homes in 
New York from homes in San Francisco

Take a look at home:
http://www.r2d3.us/visual-intro-to-machine-learning-part-1/



Furong Huang
3251 A.V. Williams, College Park, MD 20740

301.405.8010 / furongh@cs.umd.edu

vCheck out course webpage, Canvas, Piazza

vSubmit HW01
qdue Thursday 10:30am

vDo the readings!


