
CMSC 422 Introduction to Machine Learning
Lecture 2 Decision Trees

Furong Huang / furongh@cs.umd.edu

Last week: introducing
machine learning

What does “learning by example” mean?

Classification tasks

Learning requires examples + inductive bias
Generalization vs. memorization

Formalizing the learning problem
Function approximation
Learning as minimizing expected loss0poo

Supervised Learning

Input
! ∈ #

An item !
drawn from an
input space #

Output
y ∈ %

An item y
drawn from an
output space %

System
y = '(!)

Consider systems that apply a function '() to
input items ! and return outputs * = '(!).

Supervised Learning

Input
! ∈ #

An item !
drawn from an
input space #

Output
y ∈ %

An item y
drawn from an
output space %

System
y = '(!)

In (supervised) machine learning, we deal
with systems whose '(!) is learned from
examples.

Supervised Learning

Input
! ∈ #

An item !
drawn from an
input space #

Output
y ∈ %

An item y
drawn from an
output space %

System
y = '(!)

We typically use machine learning when
the function '(!) we want the system to
apply is unknown to us, and we cannot
“think” about it.

Supervised Learning

Input
! ∈ #

An item !
drawn from an

instance space #

Output
y ∈ %

An item &
drawn from a
label space %

Learned Model
y = ((!)

Target function
y = +(!)

Supervised Learning: Training

Labeled
Training Data

!train

("#, %1)
("(, %2)

⋮
("+, %,)

Learned
model
-(")

Learning
Algorithm

Given the training examples in !train

The learner returns a model -(")

Supervised Learning: Testing

Labeled
Test Data
!test

("#′, &1′)
(")′, &2′)

⋮
(",′, &-′)

Supervised Learning: Testing

Labeled
Test Data
!test

("#′, &1′)
(")′, &2′)

⋮
(",′, &-′)

Raw
Test Data
.test

"#′
")′
⋮
",′

Test
Labels
/test

&1′
&2′
⋮
&-′

Supervised Learning: Testing

• Apply the model to the raw test data
• Evaluate by comparing predicted labels

against the test labels

Raw
Test Data
!test

"#′
"%′
⋮
"'′

Learned
model
((")

Test
Labels
+test

,1′
,2′
⋮
,/′

Predicted
Labels
((! test)

(("#′)
(("%′)
⋮

(("'′)

Can we use the test data otherwise?

Learning formally

• Given: examples (", $(")) of unknown function $
• Find: A good approximation of $
• " provides some representation of the input

Ø Feature extraction: the process of mapping a domain element
into a representation.

Ø " ∈ 0,1), " ∈ ℝ)

• The target function $() (label)
Ø $ " ∈ {−1,+1} Binary classification
Ø $ " ∈ 1,2,3, … , 2 − 1 Multi-class classification
Ø $ " ∈ ℝ Regression

Learning formally - continued

• Hypothesis space
Ø Set of possible instances X = {$ ∈ &}
Ø Set of possible outputs Y = {y ∈ *}
Ø The set of function hypotheses that provide some mapping

from the input to output space + = ℎ	 	ℎ: $ → y, $ ∈ &, y ∈ *}
Ø Size of hypothesis space

Machine Learning
as Function Approximation

• Problem setting
Ø Set of possible instancesX = {$ ∈ &}
Ø Unknown target function (: Y = {y ∈ ,}
Ø Set of function hypotheses - = ℎ	 	ℎ: $ → y, $ ∈ &, y ∈ ,}

• Input
Ø Training examples { $ 2 , 3 2 , … $ 5 , 3 5 } of unknown target

function (
• Output

Ø Hypothesis ℎ	 ∈ -	that best approximates target function (

Formalizing induction:
Loss Function

!(#, %(&)) where #	is the truth and % & 	is the
system’s prediction

e.g.	! #, %(&)	 = 	 *0					,%	# = %(&)
1							./ℎ123,41

Captures our notion of what is important to learn

Formalizing induction:
Data generating distribution

Where does the data come from?

• Data generating distribution
A probability distribution ! over (#, %) pairs

• We don’t know what ! is!
We only get a random sample from it: our training data

Formalizing induction:
Expected loss

• ! should make good predictions
• as measured by loss "
• on future examples that are also drawn from #

• Formally
• $, the expected loss of !	over # with respect to " should be

small
$ ≜ ' (,* ~, "(., !(/)) = 	∑ # /, . "(., !(/))((,*)

Formalizing induction:
Training error
• We can’t compute expected loss because we don’t know what !

is

• We only have a sample of !
• training examples { # $, & $, … # (, & (}

• All we can compute is the training error

*̂ ≜ 	. 1
0 1(&

3 , 4(# 3))
(

36$

Formalizing Induction

• Given
• a loss function !
• a sample from some unknown data distribution "

• Our task is to compute a function f that has low
expected error over " with respect to !.
# $,& ~(!(*, +(,)) = 		 0 " ,, * !(*, +(,))

($,&)

Today: Decision Trees

• What is a decision tree?

• How to learn a decision tree from data?

• What is the inductive bias?

• Generalization?

An example training set

A decision tree
to decide whether to play tennis

Decision Trees

• Representation
Ø Each internal node tests a feature
Ø Each branch corresponds to a feature value
Ø Each leaf node assigns a classification

v or a probability distribution over classifications

• Decision trees represent functions that map
examples in X to classes in Y

Exercise

How would you represent the following
Boolean functions with decision trees?

! ∩ #

! ∪ #

Take home exercise: ! ∩ # ∪ (& ∩ ¬()

Today: Decision Trees

• What is a decision tree?

• How to learn a decision tree from data?

• What is the inductive bias?

• Generalization?

Function Approximation
with Decision Trees

• Problem setting
Ø Set of possible instances !

v Each instance "	 ∈ ! is a feature vector " = ["', … , "*]
Ø Unknown target function ,: !	 → /

v / is discrete valued
Ø Set of function hypotheses 0 = ℎ	 	ℎ: !	 → /}

v Each hypothesis ℎ is a decision tree
• Input

Ø Training examples { 4 ' , 5 ' , … 4 6 , 5 6 } of unknown target
function ,

• Output
Ø Hypothesis ℎ	 ∈ 0	that best approximates target function ,

Decision Trees Learning

• Finding the hypothesis ℎ	 ∈ $
Ø That minimizes training error
Ø Or maximizes training accuracy

• How?
Ø $	 is too large for exhaustive search!
Ø We will use a heuristic search algorithm which

v Picks questions to ask, in order
v Such that classification accuracy is maximized

Top-down Induction
of Decision Trees

CurrentNode = Root

DTtrain (examples for CurrentNode, features at
CurrentNode):

1. Find F, the “best” decision feature for next
node

2. For each value of F, create new descendant of
node

3. Sort training examples to leaf nodes
4. If training examples perfectly classified

Stop
Else
Recursively apply DTtrain over new leaf nodes

How to select the “best” feature?

• A good feature is a feature that lets us
make correct classification decision

• One way to do this:
Ø select features based on their classification

accuracy

• Let’s try it on the PlayTennis dataset

Let’s build a decision tree
using features O, T, H, W

Partitioning examples according to
Humidity feature

Partitioning examples:
H = Normal

Partitioning examples:
H = Normal and W = Strong

Decision Trees

• Can represent any Boolean Function
• Can be viewed as a way to compactly represent a lot of

data.
• The evaluation of the Classifier is easy
• Clearly, given data, there are many ways to represent it

as a decision tree.
• Learning a good representation from data is the

challenge.

Will I play tennis today?

• Features
Ø Outlook: {Sun, Overcast, Rain}

Ø Temperature: {Hot, Mild, Cool}

Ø Humidity: {High, Normal, Low}

Ø Wind: {Strong, Weak}

• Labels
Ø Binary classification task: Y = {+, -}

Will I play tennis today?

O T H W Play?
1 S H H W -

2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

Ø Outlook: S(unny),
O(vercast),
R(ainy)

Ø Temperature: H(ot),
M(ild),
C(ool)

Ø Humidity: H(igh),
N(ormal),
L(ow)

Ø Wind: S(trong),
W(eak)

Will I play tennis today?

O T H W Play?
1 S H H W -

2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

Ø Data is processed in Batch
(i.e. all the data available)

Ø Recursively build a decision
tree top down.

Top-down Induction
of Decision Trees

CurrentNode = Root

DTtrain (examples for CurrentNode, features at
CurrentNode):

1. Find F, the “best” decision feature for next
node

2. For each value of F, create new descendant of
node

3. Sort training examples to leaf nodes
4. If training examples perfectly classified

Stop
Else
Recursively apply DTtrain over new leaf nodes

Picking the Root Attribute

• The goal is to have the resulting decision tree
as small as possible (Occam’s Razor)
Ø However, finding the minimal decision tree

consistent with the data is NP-hard
• The recursive algorithm is a greedy heuristic

search for a simple tree, but cannot guarantee
optimality.

• The main decision in the algorithm is the
selection of the next attribute to condition on.

Picking the Root Attribute

Training Data with 2 Boolean attributes (A,B)
((A=0,B=0), -): 50 examples
((A=0,B=1), -): 50 examples
((A=1,B=0), -): 0 examples
((A=1,B=1), +): 100 examples

What should be the first attribute we select?

Splitting on A: we get purely labeled
nodes

Splitting on B: we don’t get purely
labeled nodes

Picking the Root Attribute

Training Data with 2 Boolean attributes (A,B)
((A=0,B=0), -): 50 examples
((A=0,B=1), -): 50 examples
((A=1,B=0), -): 3 examples
((A=1,B=1), +): 100 examples

Trees looks structurally similar; which attribute should we choose?

Another feature selection criterion:
Entropy
• Used in the ID3 algorithm [Quinlan, 1963]

Ø pick feature with smallest entropy to split the
examples at current iteration

• Entropy measures impurity of a sample of
examples

Sample Entropy

High Entropy –
High level of uncertainty

Low Entropy –
Low level of uncertainty

Information Gain

• The information gain of an attribute ! is the
expected reduction in entropy caused by
partitioning on this attribute
"!#$ %, ! = ($)*+,- % − / |%1|

|%| ($)*+,-(%1)1∈156789(5)
Ø Original set is %.	
Ø 	%1	 is the subset of % for which attribute ! has value <.
Ø The entropy of partitioning the data is calculated by weighing the

entropy of each partition by its size relative to the original set.
v Partitions of low entropy (imbalanced splits) lead to high gain

Ø Take Home Exercise: go back and check which of the A, B splits is
better.

Will I play tennis today?

O T H W Play?
1 S H H W -

2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

Ø Outlook: S(unny),
O(vercast),
R(ainy)

Ø Temperature: H(ot),
M(ild),
C(ool)

Ø Humidity: H(igh),
N(ormal),
L(ow)

Ø Wind: S(trong),
W(eak)

Will I play tennis today?

O T H W Play?
1 S H H W -

2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

Ø Current entropy:
P = 9/14
N =5/14

Ø H(Y)=
-(9/14) log2(9/14)
-(5/14) log2(5/14)

≈ 0.94

Will I play tennis today?

O T H W Play?
1 S H H W -

2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

Ø Outlook = sunny:
p=2/5 n =3/5 HS=0.971

Ø Outlook =overcast:
p=4/4 n =0 HO=0

Ø Outlook = rainy:
p=3/5 n =2/5 HR=0.971

Ø Expected entropy
5
14 ×0.971 + 4

14 ×0

+ 5
14 ×0.971 = +. ,-.

Ø Information gain:
0.940-0.694 = 0.246

Will I play tennis today?

O T H W Play?
1 S H H W -

2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

Ø Humidity = sunny:
p=3/7 n =4/7 HH=0.985

Ø Humidity =overcast:
p=6/7 n =1/7 HO=0.592

Ø Expected entropy
7
14 ×0.985 + 7

14 ×0.592
= -. ../0

Ø Information gain:
0.940-0.7785 = 0.1515

Which feature to split on?

O T H W Play?
1 S H H W -

2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

Ø Information gain:
Outlook: 0.246
Humidity: 0.151
Wind: 0.048
Temperature: 0.029

ü Split on Outlook

An Illustrative Example (III)
O T H W Play?

1 S H H W -

2 S H H S -

3 O H H W +

4 R M H W +

5 R C N W +

6 R C N S -

7 O C N S +

8 S M H W -

9 S C N W +

10 R M N W +

11 S M N S +

12 O M H S +

13 O H N W +

14 R M H S -

Continue until:

• Every attribute is included in path, or,

• All examples in the leaf have same label

An Illustrative Example (IV)

An Illustrative Example (V)

induceDecisionTree(S)

1. Does ! uniquely define a class?
if all " ∈ ! have the same label y: return !;

2. Find the feature with the most information gain:
% = argmax,-.%/(!, 2,)

3. Add children to !	:
for 5 in Values(2,):

!6 = " ∈ ! 2, = 5
addChild(!	, !6)
induceDecisionTree(!6)

return S;

An Illustrative Example (VI)

Hypothesis Space in Decision Tree
Induction
• Conduct a search of the space of decision

trees which can represent all possible
discrete functions. (pros and cons)

• Goal: to find the best decision tree
• Finding a minimal decision tree consistent

with a set of data is NP-hard.
• Performs a greedy heuristic search: hill

climbing without backtracking.
• Makes statistically based decisions using

all data.

A decision tree to distinguish homes in
New York from homes in San Francisco

Take a look at home:
http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

Furong Huang
3251 A.V. Williams, College Park, MD 20740

301.405.8010 / furongh@cs.umd.edu

vCheck out course webpage, Canvas, Piazza

vSubmit HW01
qdue Thursday 10:30am

vDo the readings!

