
CMSC 422 Introduction to Machine Learning
Lecture 5 K-Means Clustering (Unsupervised Learning)

Furong Huang / furongh@cs.umd.edu

Slides adapted from Prof. Carpuat

Question

• When applying a learning algorithm, some
things are properties of the problem you
are trying to solve, and some things are up
to you to choose as the ML programmer.

• Which of the following are properties of the
problem?
Ø The data generating distribution
Ø The train/dev/test split
Ø The learning model
Ø The loss function

Recap

• Nearest Neighbors (NN) algorithms for
classification
Ø K-NN, Epsilon ball NN
Ø Take a geometric view of learning

• Fundamental Machine Learning Concepts
Ø Decision boundary

v Visualizes predictions over entire feature space
v Characterizes complexity of learned model
v Indicates overfitting/underfitting

Exercise: When are DT vs kNN
appropriate?
Properties of
classification problem

Can Decision Trees
handle them?

Can K-NN handle
them?

Binary features

Numeric features
Categorical features
Robust to noisy training
examples
Fast classification is
crucial
Many irrelevant features

Relevant features have
very different scale

Exercise: When are DT vs kNN
appropriate?
Properties of
classification problem

Can Decision Trees
handle them?

Can K-NN handle
them?

Binary features yes yes

Numeric features yes yes
Categorical features yes yes
Robust to noisy training
examples

no (for default algorithm) yes (when k > 1)

Fast classification is
crucial

yes no

Many irrelevant features yes no

Relevant features have
very different scale

yes no

Today’s Topics

• A new algorithm
Ø K-Means Clustering

• Fundamental Machine Learning
Concepts
Ø Unsupervised vs. supervised learning
Ø Decision boundary

Clustering

• Goal: automatically partition examples
into groups of similar examples

• Why? It is useful for
Ø Automatically organizing data
Ø Understanding hidden structure in data
Ø Preprocessing for further analysis

What can we cluster in practice?

• news articles or web pages by topic
• protein sequences by function, or

genes according to expression profile
• users of social networks by interest
• customers according to purchase

history
• …

Clustering

• Input
Ø a set ! of " points in feature space
Ø a distance measure specifying distance #(%! , %")

between pairs (%! , %")

• Output
Ø A partition {	!#, !$, … , !%} of !

Supervised Machine Learning
as Function Approximation

Problem setting
• Set of possible instances !
• Unknown target function ": !	 → &
• Set of function hypotheses ' = ℎ	 	ℎ: !	 → &}
Input
• Training examples { , - , / - , … , 1 , / 1 } of unknown

target function "
Output
• Hypothesis ℎ	 ∈ '	that best approximates target function "

Supervised
vs. unsupervised learning

• Clustering is an example of
unsupervised learning

• We are not given examples of classes
y

• Instead we have to discover classes in
data

2 datasets with very different
underlying structure!

The K-Means Algorithm
Training Data

K: number of
clusters to
discover

K-means
1. Ask user how many

clusters they’d like.
(e.g. k=5)

K-means
1. Ask user how many

clusters they’d like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

K-means
1. Ask user how many

clusters they’d like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it’s
closest to. (Thus
each Center “owns”
a set of datapoints)

K-means
1. Ask user how many

clusters they’d like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it’s
closest to.

4. Each Center finds
the centroid of the
points it owns

K-means
1. Ask user how many

clusters they’d like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it’s
closest to.

4. Each Center finds
the centroid of the
points it owns…

5. …and jumps there
6. …Repeat until

terminated!

K-Means properties

• Time complexity: O(KNL) where
Ø K is the number of clusters
Ø N is number of examples
Ø L is the number of iterations

• K is a hyperparameter
Ø Needs to be set in advance (or learned on dev set)

• Different initializations yield different results!
Ø Doesn’t necessarily converge to best partition

• “Global” view of data: revisits all examples at every
iteration

K-means Questions

Are we sure it will terminate?
Are we sure it will find an optimal
clustering?
How should we start it?
How could we automatically choose the
number of centers?

….we’ll deal with these questions over the next few slides

Can K-means always win?

Impact of initialization

Impact of initialization

Optimization View of K-means

Given a set of observations ("!, "", … , "#) where each
observation is a &-dimensional real vector

k-means clustering aims to partition the ' observations
into k(≤ ") sets S = S!, S", … , ,$ so as to minimize
the within-cluster sum of squares.

Formally, the objective is to find:

argmin
%
33 " − 5& " = argmin

'
3 ,& 	Var(,&)
(

&)∈%+

(

&,!
	

where 5& is the mean of points in ,&.

Trying to find good optima

Idea 1: Be careful about where you start
Idea 2: Do many runs of k-means, each from a
different random start configuration
Many other ideas floating around.

Common uses of K-means
• Often used as an exploratory data analysis tool
• In one-dimension, a good way to quantize real-

valued variables into k non-uniform buckets
• Used on acoustic data in speech understanding to

convert waveforms into one of k categories
(known as Vector Quantization)

• Also used for choosing color palettes on old
fashioned graphical display devices!

Questions for you…

• Are there clusters that cannot be
discovered using k-means?

• Do you know any other clustering
algorithms?

Single Linkage Hierarchical Clustering

1. Say “Every point is its
own cluster”

Single Linkage Hierarchical Clustering

1. Say “Every point is its
own cluster”

2. Find “most similar” pair
of clusters

Single Linkage Hierarchical Clustering

1. Say “Every point is its
own cluster”

2. Find “most similar” pair
of clusters

3. Merge it into a parent
cluster

Single Linkage Hierarchical Clustering

1. Say “Every point is its
own cluster”

2. Find “most similar” pair
of clusters

3. Merge it into a parent
cluster

4. Repeat

Single Linkage Hierarchical Clustering

1. Say “Every point is its
own cluster”

2. Find “most similar” pair
of clusters

3. Merge it into a parent
cluster

4. Repeat

Single Linkage Hierarchical Clustering

1. Say “Every point is its
own cluster”

2. Find “most similar” pair
of clusters

3. Merge it into a parent
cluster

4. Repeat…until you’ve
merged the whole
dataset into one clusterYou’re left with a nice

dendrogram, or taxonomy, or
hierarchy of datapoints (not

shown here)

How do we define similarity
between clusters?

• Minimum distance between
points in clusters

• Maximum distance between
points in clusters

• Average distance between
points in clusters

Aside: Curse of dimensionality

• Challenges of working with high
dimensional spaces
Ø Hard to visualize
Ø Computational cost
Ø Many of our intuitions about 2D or 3D spaces don’t

hold
v High dimensional hyperspheres “look more like porcupines

than balls”
v Distances between two random points in high dimensions are

approximately the same

(CIML Section 3.5 + HW #3)

What you should know

• New Algorithms
Ø K-NN classification
Ø K-means clustering

• Fundamental ML concepts
Ø How to draw decision boundaries
Ø What decision boundaries tells us about the

underlying classifiers
Ø The difference between supervised and

unsupervised learning

Furong Huang
3251 A.V. Williams, College Park, MD 20740

301.405.8010 / furongh@cs.umd.edu

