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Question

• When applying a learning algorithm, some 
things are properties of the problem you 
are trying to solve, and some things are up 
to you to choose as the ML programmer. 

• Which of the following are properties of the 
problem?
Ø The data generating distribution
Ø The train/dev/test split
Ø The learning model
Ø The loss function



Recap

• Nearest Neighbors (NN) algorithms for 
classification
Ø K-NN, Epsilon ball NN
Ø Take a geometric view of learning

• Fundamental Machine Learning Concepts
Ø Decision boundary

v Visualizes predictions over entire feature space
v Characterizes complexity of learned model
v Indicates overfitting/underfitting



Exercise: When are DT vs kNN
appropriate?
Properties of 
classification problem

Can Decision Trees 
handle them?

Can K-NN handle 
them?

Binary features

Numeric features
Categorical features
Robust to noisy training 
examples
Fast classification is 
crucial
Many irrelevant features

Relevant features have 
very different scale



Exercise: When are DT vs kNN
appropriate?
Properties of 
classification problem

Can Decision Trees 
handle them?

Can K-NN handle 
them?

Binary features yes yes

Numeric features yes yes
Categorical features yes yes
Robust to noisy training 
examples

no (for default algorithm) yes (when k > 1)

Fast classification is 
crucial

yes no

Many irrelevant features yes no

Relevant features have 
very different scale

yes no



Today’s Topics

• A new algorithm
Ø K-Means Clustering

• Fundamental Machine Learning 
Concepts
Ø Unsupervised vs. supervised learning
Ø Decision boundary



Clustering

• Goal: automatically partition examples 
into groups of similar examples

• Why? It is useful for
Ø Automatically organizing data
Ø Understanding hidden structure in data
Ø Preprocessing for further analysis



What can we cluster in practice?

• news articles or web pages by topic
• protein sequences by function, or 

genes according to expression profile
• users of social networks by interest
• customers according to purchase 

history
• …



Clustering

• Input
Ø a set ! of " points in feature space
Ø a distance measure specifying distance #(%! , %")

between pairs (%! , %")

• Output
Ø A partition {	!#, !$, … , !%} of !



Supervised Machine Learning 
as Function Approximation

Problem setting
• Set of possible instances !
• Unknown target function ": !	 → &
• Set of function hypotheses ' = ℎ	 	ℎ: !	 → &}
Input
• Training examples { , - , / - , … , 1 , / 1 } of unknown 

target function "
Output
• Hypothesis ℎ	 ∈ '	that best approximates target function "



Supervised 
vs. unsupervised learning

• Clustering is an example of 
unsupervised learning

• We are not given examples of classes 
y

• Instead we have to discover classes in 
data



2 datasets with very different 
underlying structure!



The K-Means Algorithm
Training Data

K: number of 
clusters to 
discover



K-means
1. Ask user how many 

clusters they’d like. 
(e.g. k=5) 
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K-means
1. Ask user how many 

clusters they’d like. 
(e.g. k=5) 

2. Randomly guess k 
cluster Center 
locations

3. Each datapoint finds 
out which Center it’s 
closest to.

4. Each Center finds 
the centroid of the 
points it owns…

5. …and jumps there
6. …Repeat until 

terminated!



K-Means properties

• Time complexity: O(KNL) where
Ø K is the number of clusters
Ø N is number of examples
Ø L is the number of iterations

• K is a hyperparameter
Ø Needs to be set in advance (or learned on dev set)

• Different initializations yield different results!
Ø Doesn’t necessarily converge to best partition

• “Global” view of data: revisits all examples at every 
iteration



K-means Questions

Are we sure it will terminate?
Are we sure it will find an optimal 
clustering?
How should we start it?
How could we automatically choose the 
number of centers?

….we’ll deal with these questions over the next few slides



Can K-means always win?



Impact of initialization



Impact of initialization



Optimization View of K-means

Given a set of observations ("!, "", … , "#) where each 
observation is a &-dimensional real vector

k-means clustering aims to partition the ' observations 
into k(≤ ") sets S = S!, S", … , ,$ so as to minimize 
the within-cluster sum of squares.

Formally, the objective is to find:

argmin
%
33 " − 5& " = argmin

'
3 ,& 	Var(,&)
(

&)∈%+

(

&,!
	

where 5& is the mean of points in ,&. 



Trying to find good optima

Idea 1: Be careful about where you start
Idea 2: Do many runs of k-means, each from a 
different random start configuration
Many other ideas floating around.



Common uses of K-means
• Often used as an exploratory data analysis tool
• In one-dimension, a good way to quantize real-

valued variables into k non-uniform buckets
• Used on acoustic data in speech understanding to 

convert waveforms into one of k categories 
(known as Vector Quantization)

• Also used for choosing color palettes on old 
fashioned graphical display devices!



Questions for you…

• Are there clusters that cannot be 
discovered using k-means?

• Do you know any other clustering 
algorithms?



Single Linkage Hierarchical Clustering

1. Say “Every point is its 
own cluster”
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Single Linkage Hierarchical Clustering

1. Say “Every point is its 
own cluster”

2. Find “most similar” pair 
of clusters

3. Merge it into a parent 
cluster

4. Repeat…until you’ve 
merged the whole 
dataset into one clusterYou’re left with a nice 

dendrogram, or taxonomy, or 
hierarchy of datapoints (not 

shown here)

How do we define similarity 
between clusters?

• Minimum distance between 
points in clusters 

• Maximum distance between 
points in clusters

• Average distance between 
points in clusters 



Aside: Curse of dimensionality

• Challenges of working with high 
dimensional spaces
Ø Hard to visualize
Ø Computational cost
Ø Many of our intuitions  about 2D or 3D spaces don’t 

hold
v High dimensional hyperspheres “look more like porcupines 

than balls” 
v Distances between two random points in high dimensions are 

approximately the same

(CIML Section 3.5 + HW #3)



What you should know

• New Algorithms
Ø K-NN classification
Ø K-means clustering

• Fundamental ML concepts
Ø How to draw decision boundaries
Ø What decision boundaries tells us about the 

underlying classifiers
Ø The difference between supervised and 

unsupervised learning
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