Slides adapted from Prof. Carpuat

CMSC 422 Introduction to Machine Learning Lecture 6 The Perceptron

Furong Huang / furongh@cs.umd.edu

Impact of initialization

Optimization View of K-means

Given a set of observations $(x_1, x_2, ..., x_n)$ where each observation is a d-dimensional real vector

k-means clustering aims to partition the *n* observations into $k \le x$ sets $S = \{S_1, S_2, \dots, S_k\}$ so as to minimize the within-cluster sum of squares.

Formally, the objective is to find:

$$\arg\min_{S} \sum_{i=1}^{k} \sum_{x \in S_{i}} ||x - \mu_{i}||^{2} = \arg\min_{S} \sum_{i}^{k} |S_{i}| \operatorname{Var}(S_{i})$$

here μ_{i} is the mean of points in S_{i}

where μ_i is the mean of points in S_i .

This week

A new model/algorithm

- the perceptron
- and its variants: voted, averaged

Fundamental Machine Learning Concepts

- Online vs. batch learning
- Error-driven learning
- Project 1 coming soon!

Geometry concept: Hyperplane

Separates a D-dimensional space into two half-spaces

Defined by an outward pointing normal vector w ∈ ℝ^D
 w is orthogonal to any vector lying on the hyperplane

 Hyperplane passes through the origin, unless we also

define a **bias** term b

Binary classification via hyperplanes

 Let's assume that the decision boundary is a hyperplane

 Then, training consists in finding a hyperplane w that separates positive from negative examples

Binary classification via hyperplanes

At test time, we check on what side of the hyperplane examples fall

$$\hat{y} = sign(w^T x + b)$$

Function Approximation with Perceptron

- Problem setting
- Set of possible instances X
 - Each instance $x \in X$ is a feature vector $x = [x_1, ..., x_D]$
- Unknown target function $f: X \to Y$
 - *Y* is binary valued {-1; +1}
- Set of function hypotheses $H = \{h \mid h: X \rightarrow Y\}$
 - Each hypothesis *h* is a hyperplane in D-dimensional space
- Input
- Training examples { (x⁽¹⁾, y⁽¹⁾), ... (x^(N), y^(N)) } of unknown target function f
- Output
- Hypothesis $h \in H$ that best approximates target function f

Perception: Prediction Algorithm

Algorithm 6 PERCEPTRONTEST $(w_0, w_1, \ldots, w_D, b, \hat{x})$

^{1:} $a \leftarrow \sum_{d=1}^{D} w_d \hat{x}_d + b$ ^{2:} **return SIGN**(*a*)

// compute activation for the test example

Aside: biological inspiration

Perceptron Training Algorithm

Perceptron update: geometric interpretation

A training example (x, y) is misclassified, i.e., $sign(\mathbf{w}_{old}^{\mathsf{T}}\mathbf{x}+b)\neq y$ Let's say y = +1Wold misclassified

Perceptron update: geometric interpretation

Update: $w_{new} \leftarrow w_{old} + yx$, i.e., $w_{new} \leftarrow w_{old} + x$

Perceptron update: geometric interpretation

Update: $w_{new} \leftarrow w_{old} + yx$, i.e., $w_{new} \leftarrow w_{old} + x$

Properties of the Perceptron training algorithm

Online

- We look at one example at a time, and update the model as soon as we make an error
- As opposed to batch algorithms that update parameters after seeing the entire training set

Error-driven

We only update parameters/model if we make an error

Practical considerations

- The order of training examples matters!
 - Random is better
- Early stopping
 Good strategy to avoid overfitting
- Simple modifications dramatically improve performance
 - voting or averaging

Predicting with

The voted perceptron

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(k)} \operatorname{sign}\left(\boldsymbol{w}^{(k)} \cdot \hat{\boldsymbol{x}} + b^{(k)}\right)\right)$$

The averaged perceptron

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(k)} \left(\boldsymbol{w}^{(k)} \cdot \hat{\boldsymbol{x}} + b^{(k)}\right)\right)$$

Require keeping track of "survival time" of weight vectors $c^{(1)}, \ldots, c^{(K)}$

How would you modify this algorithm for voted perceptron?

Algorithm 5 PERCEPTRONTRAIN(D, MaxIter)			
1:	$w_d \leftarrow o$, for all $d = 1 \dots D$	// initialize weights	
2:	$b \leftarrow o$	// initialize bias	
3:	for <i>iter</i> = 1 <i>MaxIter</i> do		
4:	for all $(x,y) \in \mathbf{D}$ do		
5:	$a \leftarrow \sum_{d=1}^{D} w_d x_d + b$	<pre>// compute activation for this example</pre>	
6:	if $ya \leq o$ then		
7:	$w_d \leftarrow w_d + yx_d$, for all $d = 1$	D // update weights	
8:	$b \leftarrow b + y$	// update bias	
9:	end if		
10:	end for		
11: end for			
12:	return $w_0, w_1,, w_D, b$		

How would you modify this algorithm for averaged perceptron?

Algorithm 5 PERCEPTRONTRAIN(D, MaxIter)			
1:	$w_d \leftarrow o$, for all $d = 1 \dots D$	// initialize weights	
2:	$b \leftarrow o$	// initialize bias	
3:	for <i>iter</i> = 1 <i>MaxIter</i> do		
4:	for all $(x,y) \in \mathbf{D}$ do		
5:	$a \leftarrow \sum_{d=1}^{D} w_d x_d + b$	<pre>// compute activation for this example</pre>	
6:	if $ya \leq o$ then		
7:	$w_d \leftarrow w_d + yx_d$, for all $d = 1$.	D // update weights	
8:	$b \leftarrow b + y$	// update bias	
9:	end if		
10:	end for		
11: end for			
12:	return $w_0, w_1,, w_D, b$		

Averaged perceptron decision rule

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(k)} \left(\boldsymbol{w}^{(k)} \cdot \hat{\boldsymbol{x}} + b^{(k)}\right)\right)$$

can be rewritten as

$$\hat{y} = \operatorname{sign}\left(\left(\sum_{k=1}^{K} c^{(k)} \boldsymbol{w}^{(k)}\right) \cdot \hat{\boldsymbol{x}} + \sum_{k=1}^{K} c^{(k)} \boldsymbol{b}^{(k)}\right)$$

Averaged Perceptron Training

Algorithm 7 AVERAGEDPERCEPTRONTRAIN(**D**, MaxIter) $1: \boldsymbol{w} \leftarrow \langle o, o, \ldots o \rangle \quad , \quad \boldsymbol{b} \leftarrow \boldsymbol{o}$ // initialize weights and bias 2: $\boldsymbol{u} \leftarrow \langle 0, 0, \dots 0 \rangle$, $\boldsymbol{\beta} \leftarrow 0$ // initialize cached weights and bias // initialize example counter to one $: C \leftarrow 1$ $_{4:}$ for *iter* = 1 ... *MaxIter* do for all $(x,y) \in \mathbf{D}$ do 5: if $y(\boldsymbol{w} \cdot \boldsymbol{x} + \boldsymbol{b}) \leq \boldsymbol{o}$ then 6: $w \leftarrow w + y x$ // update weights 7: $b \leftarrow b + y$ // update bias 8: // update cached weights $u \leftarrow u + y c x$ 9: $\beta \leftarrow \beta + \gamma c$ // update cached bias 10: end if 11: // increment counter regardless of update $c \leftarrow c + 1$ 12: end for 13: 14: end for 15: return $w - \frac{1}{c} u, b - \frac{1}{c} \beta$ // return averaged weights and bias

Can the perceptron always find a hyperplane to separate positive from negative examples?

A new model/algorithm

- the perceptron
- and its variants: voted, averaged

Fundamental Machine Learning Concepts

- Online vs. batch learning
- Error-driven learning

Project 1 coming soon!

Furong Huang 3251 A.V. Williams, College Park, MD 20740 301.405.8010 / furongh@cs.umd.edu