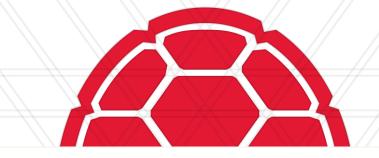
Slides adapted from Prof. Carpuat



CMSC 422 Introduction to Machine Learning Lecture 7 The Perceptron

Furong Huang / furongh@cs.umd.edu

This week

□ The perception: a new model/algorithm

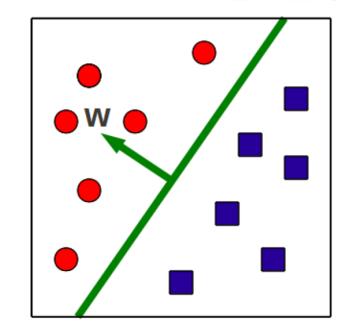
- its variants: voted, averaged
- convergence proof

Fundamental Machine Learning Concepts

- Online vs. batch learning
- Error-driven learning
- Linear separability and margin of a dataset

Project 1 published today

Recap: Perceptron for binary classification



Classifier = hyperplane that separates positive from negative examples

$$\hat{y} = sign(w^T x + b)$$

- Perceptron training
 - Finds such a hyperplane
 - Online & error-driven

Learning

- Find algorithm that gives us w and b for a given data set
 D (x, y)
 - Many algorithms possible
- Once we know w and b we can predict the class of a new data point x_i by evaluating

 $\hat{y} = sign(w^{\mathsf{T}} \boldsymbol{x}_i + b)$

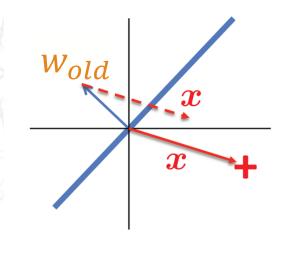
- We learned a particular way of finding these parametersvia the perceptron update rule
 - Iterative online algorithm—visits all the data over epochs

Perceptron update: geometric interpretation

A training example (x, y) is misclassified, i.e., $sign(\mathbf{w}_{old}^{\mathsf{T}}\mathbf{x}+b) \neq y$ Let's say y = +1Wold misclassified

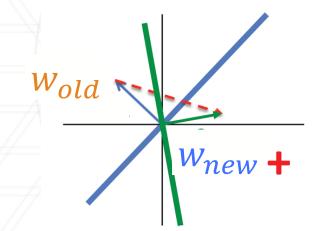
Perceptron update: geometric interpretation

Update: $w_{new} \leftarrow w_{old} + yx$, i.e., $w_{new} \leftarrow w_{old} + x$



Perceptron update: geometric interpretation

Update: $w_{new} \leftarrow w_{old} + yx$, i.e., $w_{new} \leftarrow w_{old} + x$



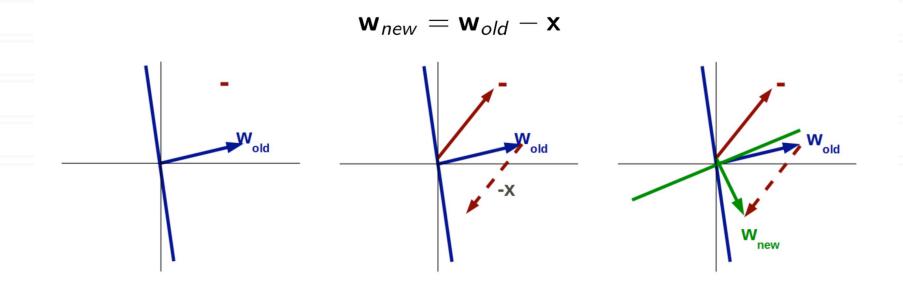
Recap: Perceptron updates

Update for a misclassified positive example: y = 1

 $\mathbf{w}_{new} = \mathbf{w}_{old} + \mathbf{x}$ $\mathbf{w}_{old} + \mathbf{w}_{old} + \mathbf{w}_{old$

Recap: Perceptron updates

Update for a misclassified negative example: y = -1



- Example of perceptron + averaged perceptron training
- Perceptron convergence proof
- Fundamental Machine Learning Concepts
 - Linear separability and margin of a dataset

Standard Perceptron: predict based on final parameters

Algorithm 5 PERCEPTRONTRAIN(D, .	MaxIter)
$w_d \leftarrow o, \text{ for all } d = 1 \dots D$	// initialize weights
$_{2:} b \leftarrow o$	// initialize bias
$_{3:}$ for <i>iter</i> = 1 <i>MaxIter</i> do	
for all $(x,y) \in \mathbf{D}$ do	
$_{5:} \qquad a \leftarrow \sum_{d=1}^{D} w_d x_d + b$	// compute activation for this example
6: if $ya \leq o$ then	
$w_d \leftarrow w_d + yx_d$, for all $d = 1$	D // update weights
$b \leftarrow b + y$	// update bias
9: end if	
10: end for	
11: end for	
12: return w_0, w_1, \ldots, w_D, b	

Predict based on final + intermediate parameters

The voted perceptron

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(k)} \operatorname{sign}\left(\boldsymbol{w}^{(k)} \cdot \hat{\boldsymbol{x}} + b^{(k)}\right)\right)$$

The averaged perceptron

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(k)} \left(\boldsymbol{w}^{(k)} \cdot \hat{\boldsymbol{x}} + b^{(k)}\right)\right)$$

 Require keeping track of "survival time" of weight vectors c⁽¹⁾,...,c^(K)

Averaged perceptron decision rule

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(k)} \left(\boldsymbol{w}^{(k)} \cdot \hat{\boldsymbol{x}} + b^{(k)} \right) \right)$$

can be rewritten as

$$\hat{y} = \operatorname{sign}\left(\left(\sum_{k=1}^{K} c^{(k)} \boldsymbol{w}^{(k)}\right) \cdot \hat{\boldsymbol{x}} + \sum_{k=1}^{K} c^{(k)} \boldsymbol{b}^{(k)}\right)$$

Averaged Perceptron: predict based on average of intermediate parameters

Algorithm 7 AveragedPerceptronTrain(D, MaxIter)	
$\underline{} :: \boldsymbol{w} \leftarrow \langle o, o, \ldots o \rangle , \boldsymbol{b} \leftarrow o$	// initialize weights and bias
2: $\boldsymbol{u} \leftarrow \langle o, o, \dots o \rangle$, $\boldsymbol{\beta} \leftarrow o$	// initialize cached weights and bias
$_{3:} C \leftarrow 1$	// initialize example counter to one
$_{4^{:}}$ for <i>iter</i> = 1 <i>MaxIter</i> do	
5: for all $(x,y) \in \mathbf{D}$ do	
$= _{6:} \text{if } y(\boldsymbol{w} \cdot \boldsymbol{x} + b) \leq o \text{ then}$	
$w \leftarrow w + y x$	// update weights
$b \leftarrow b + y$	// update bias
$= \underbrace{u \leftarrow u + y c x}_{g:}$	// update cached weights
$= 10: \qquad \beta \leftarrow \beta + y c$	// update cached bias
III: end if	
$_{12:} \qquad C \leftarrow C + 1$	// increment counter regardless of update
13: end for	
14: end for	
^{15:} return $w - \frac{1}{c} u, b - \frac{1}{c} \beta$	// return averaged weights and bias

Convergence of Perceptron

- The perceptron has converged if it can classify every training example correctly
 - i.e. if it has found a hyperplane that correctly separates positive and negative examples
- Under which conditions does the perceptron converge and how long does it take?

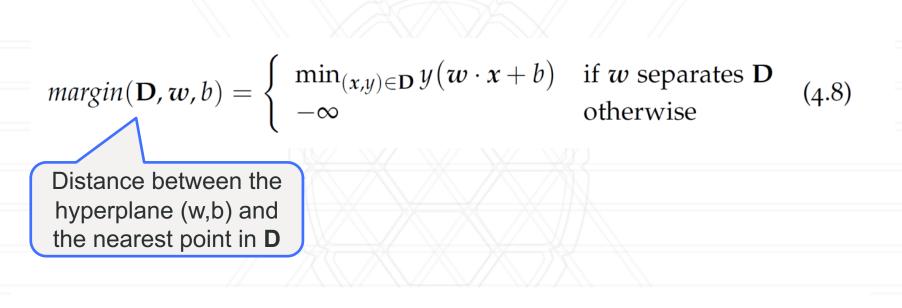
Convergence of Perceptron

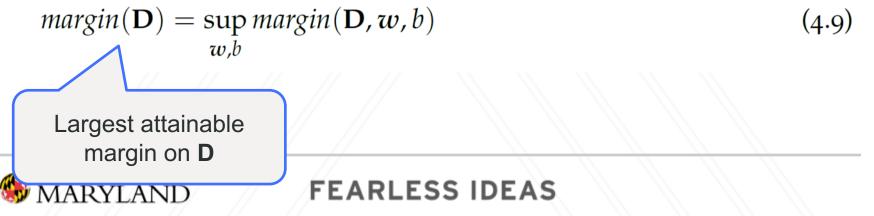
Theorem (Block & Novikoff, 1962)

If the training data $D = \{(x_1, y_1), ..., (x_N, y_N)\}$ is **linearly separable** with margin γ by a unit norm hyperplane w_* ($||w_*||=1$) with b = 0,

Then **perceptron training converges after** $\frac{R^2}{\gamma^2}$ **errors** during training (assuming (||x|| < R) for all x).

Margin of a data set D





Theorem (Block & Novikoff, 1962)

If the training data $D = \{(x_1, y_1), ..., (x_N, y_N)\}$ is **linearly** separable with margin γ by a unit norm hyperplane w_* ($||w_*||=1$) with b = 0, then perceptron training converges after $\frac{R^2}{\gamma^2}$ errors during training (assuming (||x|| < R) for all x).

Proof:

- Margin of \mathbf{w}_* on any arbitrary example (\mathbf{x}_n, y_n) : $\frac{y_n \mathbf{w}_*' \mathbf{x}_n}{||\mathbf{w}_*||} = y_n \mathbf{w}_*^T \mathbf{x}_n \ge \gamma$
- Consider the $(k+1)^{th}$ mistake: $y_n \mathbf{w}_k^T \mathbf{x}_n \leq 0$, and update $\mathbf{w}_{k+1} = \mathbf{w}_k + y_n \mathbf{x}_n$
- $\mathbf{w}_{k+1}^T \mathbf{w}_* = \mathbf{w}_k^T \mathbf{w}_* + y_n \mathbf{w}_*^T \mathbf{x}_n \ge \mathbf{w}_k^T \mathbf{w}_* + \gamma$ (why is this nice?)
- Repeating iteratively k times, we get $\mathbf{w}_{k+1}^{T}\mathbf{w}_{*} > k\gamma$ (1)
- $||\mathbf{w}_{k+1}||^2 = ||\mathbf{w}_k||^2 + 2y_n \mathbf{w}_k^T \mathbf{x}_n + ||\mathbf{x}||^2 \le ||\mathbf{w}_k||^2 + R^2 \text{ (since } y_n \mathbf{w}_k^T \mathbf{x}_n \le 0 \text{)}$
- Repeating iteratively k times, we get $||\mathbf{w}_{k+1}||^2 \le kR^2$ (2)

Theorem (Block & Novikoff, 1962)

If the training data $D = \{(x_1, y_1), ..., (x_N, y_N)\}$ is **linearly** separable with margin γ by a unit norm hyperplane w_* ($||w_*||=1$) with b = 0, then perceptron training converges after $\frac{R^2}{\gamma^2}$ errors during training (assuming (||x|| < R) for all x).

What does this mean?

- Perceptron converges quickly when margin is large, slowly when it is small
- Bound does not depend on number of training examples N, nor on number of features d
- Proof guarantees that perceptron converges, but not necessarily to the max margin separator

What you should know

- Perceptron concepts
 - training/prediction algorithms (standard, voting, averaged)
 - convergence theorem and what practical guarantees it gives us
 - how to draw/describe the decision boundary of a perceptron classifier
- Fundamental ML concepts
 - Determine whether a data set is linearly separable and define its margin
 - Error driven algorithms, online vs. batch algorithms

Furong Huang 3251 A.V. Williams, College Park, MD 20740 301.405.8010 / furongh@cs.umd.edu