Slides adapted from Prof Carpuat and Duraiswami

CMSC 422 Introduction to Machine Learning Lecture 8 Practical Issues: Features, Evaluation, Debugging

Furong Huang / furongh@cs.umd.edu

UNIVERSITY OF MARYLAND

Theorem (Block & Novikoff, 1962)

If the training data $D = \{(x_1, y_1), ..., (x_N, y_N)\}$ is **linearly** separable with margin γ by a unit norm hyperplane w_* ($||w_*||=1$) with b = 0, then perceptron training converges after $\frac{R^2}{\gamma^2}$ errors during training (assuming (||x|| < R) for all x).

Proof:

- Margin of \mathbf{w}_* on any arbitrary example (\mathbf{x}_n, y_n) : $\frac{y_n \mathbf{w}_*^T \mathbf{x}_n}{||\mathbf{w}_*||} = y_n \mathbf{w}_*^T \mathbf{x}_n \ge \gamma$
- Consider the $(k+1)^{th}$ mistake: $y_n \mathbf{w}_k^T \mathbf{x}_n \leq 0$, and update $\mathbf{w}_{k+1} = \mathbf{w}_k + y_n \mathbf{x}_n$
- $\mathbf{w}_{k+1}^T \mathbf{w}_* = \mathbf{w}_k^T \mathbf{w}_* + y_n \mathbf{w}_*^T \mathbf{x}_n \ge \mathbf{w}_k^T \mathbf{w}_* + \gamma$ (why is this nice?)
- Repeating iteratively k times, we get $\mathbf{w}_{k+1}^T \mathbf{w}_* > k\gamma$ (1)
- $||\mathbf{w}_{k+1}||^2 = ||\mathbf{w}_k||^2 + 2y_n \mathbf{w}_k^T \mathbf{x}_n + ||\mathbf{x}||^2 \le ||\mathbf{w}_k||^2 + R^2 \text{ (since } y_n \mathbf{w}_k^T \mathbf{x}_n \le 0 \text{)}$
- Repeating iteratively k times, we get $||\mathbf{w}_{k+1}||^2 \le kR^2$ (2)

Theorem (Block & Novikoff, 1962)

If the training data $D = \{(x_1, y_1), ..., (x_N, y_N)\}$ is **linearly** separable with margin γ by a unit norm hyperplane w_* ($||w_*||=1$) with b = 0, then perceptron training converges after $\frac{R^2}{\gamma^2}$ errors during training (assuming (||x|| < R) for all x).

What does this mean?

- Perceptron converges quickly when margin is large, slowly when it is small
- Bound does not depend on number of training examples N, nor on number of features d
- Proof guarantees that perceptron converges, but not necessarily to the max margin separator

What you should know

- Perceptron concepts
 - training/prediction algorithms (standard, voting, averaged)
 - convergence theorem and what practical guarantees it gives us
 - how to draw/describe the decision boundary of a perceptron classifier
- Fundamental ML concepts
 - Determine whether a data set is linearly separable and define its margin
 - Error driven algorithms, online vs. batch algorithms

Expressivity

Many functions are linear

- Conjunctions:
 - $y = x_1 \cap x_3 \cap x_5$
 - $y = sign(1 \times x_1 + 1 \times x_3 + 1 \times x_5 3), w = [1,0,1,0,1]$
- At least m of n:

NIVERSI

- $y = at \ least \ 2 \ of \ (x_1, x_3, x_5)$
- Many functions are not
 - Xor: $y = x_1 \cap x_2 \cup \neg x_1 \cap \neg x_2$
 - Non trival DNF: $y = x_1 \cap x_2 \cup x_3 \cap x_4$
- But can be made linear

Functions Can be Made Linear

- Data are not linearly separable in one dimension
- Not separable if you insist on using a specific class of functions

Blown Up Feature Space

Data are separable in $\langle x, x^2 \rangle$ space

Exclusive-OR (XOR)

Practical Issues

- "garbage in, garbage out"
 - Learning algorithms can't compensate for useless training examples
 - E.g., if all features are irrelevant
 - Feature design can have bigger impact on performance than tweaking the learning algorithm

Practical Issues

Classifier	Accuracy on test set
Team A	80.00
Team B	79.90
Team C	79.00
Team D	78.00

Which classifier is the best?

- This result table alone cannot give us the answer
- Solution: statistical hypothesis testing

Practical Issues

Classifier	Accuracy on test set
Team A	80.00
Team B	79.90
Team C	79.00
Team D	78.00

Is the difference in accuracy between A and B statistically significant?

What is the probability that the observed difference in performance was due to chance?

A confidence of 95%

- Does NOT mean
- "There is a 95% chance than classifier A is better than classifier B"
- It means

"If I run this experiment 100 times, I expect A to perform better than B 95 times."

Practical Issues: Debugging!

- You've implemented a learning algorithm
- You try it on some train/dev/test data
- But it doesn't seem to learn

- What's going on?
 - Is the data too noisy?
 - Is the learning problem too hard?
 - Is the implementation of the learning algorithm buggy?

Strategies for Isolating Causes of Errors

- Is the problem with generalization to test data?
 - Can learner fit the training data?
 - · Yes: problem is in generalization to test data
 - No: problem is in representation (need better features or better data)
- Train/test mismatch?
 - Try reselecting train/test by shuffling training data and test together

Strategies for Isolating Causes of Errors

Is algorithm implementation correct?

- Measure loss rather than accuracy
- Hand-craft a toy dataset
- Is representation adequate?
 - Can you learn if you add a cheating feature that perfectly correlates with correct class?
- Do you have enough data?
 - Try training on 80% of the training set, how much does it hurt performance?

Practical Issues: hyperparameter tuning with dev set vs. cross-validation

Algorithm 8 CROSSVALIDATE(*LearningAlgorithm*, *Data*, *K*)

- $\hat{\epsilon} \leftarrow \infty \qquad \qquad // \text{ store lowest error encountered so far}$
- $\hat{\alpha} \leftarrow \text{unknown}$ // store the hyperparameter setting that yielded it
- $_{3:}$ for all hyperparameter settings α do
- 4: $err \leftarrow []$ // keep track of the K-many error estimates
- 5: for k = 1 to K do
- 6: $train \leftarrow \{(x_n, y_n) \in Data : n \mod K \neq k-1\}$
- $_{7^{:}}$ test $\leftarrow \{(x_n, y_n) \in Data : n \mod K = k 1\}$ // test every *K*th example
- 8: *model* \leftarrow Run *LearningAlgorithm* on *train*
 - $err \leftarrow err \oplus error \text{ of } model \text{ on } test$ // add current error to list of errors
- 10: end for

9:

- avgErr \leftarrow mean of set err
- 12: **if** $avgErr < \hat{\epsilon}$ **then**
- $\hat{\epsilon} \leftarrow avgErr$
- 14: $\hat{\alpha} \leftarrow \alpha$
- 15: end if
- 16: end for

FLAKLEJJ IVLAJ

// remember these settings // because they're the best so far

N-fold cross validation

Improving Input Representations

- Feature pruning
- Feature normalization

Centering:	$x_{n,d} \leftarrow x_{n,d} - \mu_d$	(5.1)
Variance Scaling:	$x_{n,d} \leftarrow x_{n,d} / \sigma_d$	(5.2)
Absolute Scaling:	$x_{n,d} \leftarrow x_{n,d} / r_d$	(5.3)
	1	

where:

$$\mu_d = \frac{1}{N} \sum_n x_{n,d} \tag{5.4}$$

$$\sigma_d = \sqrt{\frac{1}{N-1} \sum_n (x_{n,d} - \mu_d)^2}$$
(5.5)

$$r_d = \max_n \left| x_{n,d} \right| \tag{5.6}$$

Example normalization

 $x_n \leftarrow x_n / ||x_n||$

Practical Issues: Debugging!

- You probably have a bug
 - if the learning algorithm cannot overfit the training data
 - if the predictions are incorrect on a toy 2D dataset hand-crafted to be learnable

Practical Issues: Evaluation, beyond accuracy

- So far we've measured classification performance using accuracy
- But this is not a good metric when some errors matter mode than others
 - Given medical record, predict whether patient has cancer or not
 - Given a document collection and a query, find documents in collection that are relevant to query

The 2-by-2 contingency table

Imagine we are addressing a document retrieval task for a given query, where +1 means that the document is relevant -1 means that the document is not relevant

We can categorize predictions as:

- true/false positives
- true/false negatives

	Gold label = +1	Gold label = -1
Prediction = +1	tp	fp
Prediction = -1	fn	tn

Precision and recall

- **Precision**: % of positive predictions that are correct
- **Recall**: % of positive gold labels that are found

	Gold label = +1	Gold label = -1
Prediction = +1	tp	fp
Prediction = -1	fn	tn

A combined measure: F

 A combined measure that assesses the P/R tradeoff is F measure

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

- People usually use balanced F-1 measure
 - i.e., with $\beta = 1$ (that is, $\alpha = \frac{1}{2}$)

• Harmonic mean
$$F = \frac{2PR}{P+R}$$

Formalizing Errors

The bias/variance trade-off

Trade-off between

- approximation error (bias)
- estimation error (variance)

Example:

- Consider the always positive classifier
 - Low variance as a function of a random draw of the training set
 - Strongly biased toward predicting +1 no matter what the input

Recap: practical issues

- Learning algorithm is only one of many steps in designing a ML application
- Many things can go wrong, but there are practical strategies for
 - Improving inputs
 - Evaluating
 - Tuning
 - Debugging
- Fundamental ML concepts: estimation vs. approximation error

Furong Huang 3251 A.V. Williams, College Park, MD 20740 301.405.8010 / furongh@cs.umd.edu