Slides adapted from Prof Carpuat and Duraiswami

CMSC 422 Introduction to Machine Learning Lecture 10 Multiclass Classification and Reductions

Furong Huang / furongh@cs.umd.edu

Given an arbitrary method for binary classification, how can we learn to make multiclass predictions?

Fundamental ML concept: reductions

One Example of Reduction: Learning with Imbalanced Data

TASK: α -Weighted Binary Classification

Given:

- 1. An input space \mathcal{X}
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \{-1, +1\}$

Compute: A function *f* minimizing: $\mathbb{E}_{(x,y)\sim \mathcal{D}} \left[\alpha^{y=1} \left[f(x) \neq y \right] \right]$

Subsampling Optimality Theorem:

If the binary classifier achieves a binary error rate of ϵ , then the error rate of the α -weighted classifier is $\alpha \epsilon$

Another Example of Reduction: Multiclass Classification

TASK: MULTICLASS CLASSIFICATION

Given:

- 1. An input space X and number of classes K
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times [K]$

Compute: A function *f* minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}[f(x)\neq y]$

Reduction 1: OVA

"One versus all" (aka "one versus rest")

- Train K-many binary classifiers
- classifier k predicts whether an example belong to class k or not
- At test time,
 - If only one classifier predicts positive, predict that class
 - Break ties randomly

Algorithm 12 ONEVERSUSALLTRAIN(D^{multiclass}, BINARYTRAIN)

- 1: for *i* = 1 to *K* do
- 2: $\mathbf{D}^{bin} \leftarrow \text{relabel } \mathbf{D}^{multiclass} \text{ so class } i \text{ is positive and } \neg i \text{ is negative}$
- $f_i \leftarrow \text{BINARYTRAIN}(\mathbf{D}^{bin})$
- 4: end for
- 5: **return** f_1, \ldots, f_K

Algorithm 13 ONEVERSUSALLTEST $(f_1, \ldots, f_K, \hat{x})$

- 1: *score* $\leftarrow \langle 0, 0, \dots, 0 \rangle$
- 2: for i = 1 to K do
- $y \leftarrow f_i(\hat{x})$
- $_{4:} \quad score_i \leftarrow score_i + y$
- 5: end for
- 6: return argmax_k score_k

// initialize *K*-many scores to zero

Time complexity

- Suppose you have N training examples, in K classes. How long does it take to train an OVA classifier
 - if the base binary classifier takes O(N) time to learn?
 - if the base binary classifier takes O(N²) time to learn?

Error bound

- Theorem: Suppose that the average error of the K binary classifiers is ε, then the error rate of the OVA multiclass classifier is at most (K-1) ε
- To prove this: how do different errors affect the maximum ratio of the probability of a multiclass error to the number of binary errors ("efficiency")?

Error bound proof

 If we have a false negative on one of the binary classifiers (assuming all other classifiers correctly output negative)
 What is the probability that we will make an incorrect multiclass prediction?

(K - 1) / K

Efficiency: [(K - 1) / K] / 1 = (K - 1) / K

Error bound proof

2. If we have m false positives with the binary classifiersWhat is the probability that we will make an incorrect multiclass prediction?

If there is also a false negative: 1

Efficiency = 1 / (m + 1)

Otherwise m/(m+1)

Efficiency = [m / (m + 1)] / m = 1 / (m + 1)

MARYLAND

Error bound proof

3. What is the worst case scenario?

False negative case: efficiency is (K-1)/K Larger than false positive efficiencies

There are K-many opportunities to get false negative, **overall error bound is (K-1)** ε

All versus all (aka all pairs)

How many binary classifiers does this require?

Algorithm 14 ALLVERSUSALLTRAIN(D^{multiclass}, BINARYTRAIN)

1:
$$f_{ij} \leftarrow \emptyset, \forall 1 \leq i < j \leq K$$

2: for $i = 1$ to K -1 do
3: $\mathbf{D}^{pos} \leftarrow \text{all } \mathbf{x} \in \mathbf{D}^{multiclass} \text{ labeled } i$
4: for $j = i+1$ to K do
5: $\mathbf{D}^{neg} \leftarrow \text{all } \mathbf{x} \in \mathbf{D}^{multiclass} \text{ labeled } j$
6: $\mathbf{D}^{bin} \leftarrow \{(\mathbf{x}, +1) : \mathbf{x} \in \mathbf{D}^{pos}\} \cup \{(\mathbf{x}, -1) : \mathbf{x} \in \mathbf{D}^{neg}\}$
7: $f_{ij} \leftarrow \mathbf{BINARYTRAIN}(\mathbf{D}^{bin})$
8: end for
9: end for
10: return all f_{ij} s

Algorithm 15 ALLVERSUSALLTEST(all f_{ij} , \hat{x})

1: $score \leftarrow \langle 0, 0, \dots, 0 \rangle$	// initialize K-many scores to zero	
^{2:} for <i>i</i> = 1 to <i>K</i> -1 do		
$_{3:}$ for $j = i + 1$ to K do		
$_{4:} \qquad y \leftarrow f_{ij}(\hat{x})$		
5: $score_i \leftarrow score_i + y$		
6: $score_j \leftarrow score_j - y$		
7: end for		
8: end for		
9: return argmax _k score _k		

Time complexity

- Suppose you have N training examples, in K classes. How long does it take to train an AVA classifier
 - if the base binary classifier takes O(N) time to learn?
 - if the base binary classifier takes O(N²) time to learn?

Theorem: Suppose that the average error of the K binary classifiers is ε , then the error rate of the AVA multiclass classifier is at most 2(K-1) ε

Question: Does this mean that AVA is always worse than OVA?

- Divide and conquer
 - Organize classes into binary tree structures
- Use confidence to weight predictions of binary classifiers
 - Instead of using majority vote

Topics

Given an arbitrary method for binary classification, how can we learn to make multiclass predictions?
OVA, AVA

Fundamental ML concept: reductions

Canonical example: web search

Given all the documents on the web For a user query, retrieve relevant documents, ranked from most relevant to least relevant

How can we reduce ranking to binary classification?

Preference function

- Given a query q and documents d_i and d_j, the preference function outputs whether
 - d_i should be preferred to d_i
 - Or d_i should be preferred to d_i
- That's a binary classification problem!

Specifying the reduction from ranking to binary classification

 How to train classifier that predicts preferences?

 How to turn the predicted preferences into a ranking?

Algorithm 16 NAIVERANKTRAIN(*RankingData*, BINARYTRAIN)

Algorithm 17 NAIVERANKTEST(f, \hat{x})

- 1: Score $\leftarrow \langle 0, 0, \ldots, 0 \rangle$
- 2: for all i, j = 1 to M and $i \neq j$ do
- 3: $y \leftarrow f(\hat{x}_{ij})$
- $_{4:} \quad score_i \leftarrow score_i + y$
- 5: $score_j \leftarrow score_j y$
- 6: end for
- 7: **return Argsort**(*score*)

// initialize *M*-many scores to zero

// get predicted ranking of i and j

// return queries sorted by score

Naïve approach

Works well for bipartite problems

"is this document relevant or not?"

Not ideal for full ranking problems,

because

Binary preference problems are not all equally important

Separates preference function and sorting

Improving on naïve approach

TASK: ω -RANKING

Given:

- 1. An input space \mathcal{X}
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \Sigma_M$

Compute: A function $f : \mathcal{X} \to \Sigma_M$ minimizing:

$$\mathbb{E}_{(\boldsymbol{x},\sigma)\sim\mathcal{D}}\left[\sum_{u\neq v} [\sigma_u < \sigma_v] \left[\hat{\sigma}_v < \hat{\sigma}_u\right] \,\omega(\sigma_u, \sigma_v)\right]$$
(5.7)
where $\hat{\sigma} = f(\boldsymbol{x})$

MARYLAND

Example of cost functions

$\omega(i,j) = \begin{cases} 1 & \text{if } \min\{i,j\} \le K \text{ and } i \ne j \\ 0 & \text{otherwise} \end{cases}$

Resulting Ranking Algorithms

Algorithm 18 RANKTRAIN(D^{rank} , ω , BINARYTRAIN)

- $\mathbf{D}^{bin} \leftarrow []$
- 2: for all $(x, \sigma) \in \mathbf{D}^{rank}$ do
- $_{3:}$ for all $u \neq v$ do
- $_{4:} \qquad y \leftarrow \mathbf{SIGN}(\sigma_{v} \sigma_{u})$

5:
$$w \leftarrow \omega(\sigma_u, \sigma_v)$$

6:
$$\mathbf{D}^{bin} \leftarrow \mathbf{D}^{bin} \oplus (y, w, x_{uv})$$

- 7: end for
- 8: end for
- 9: return BINARYTRAIN (\mathbf{D}^{bin})

// y is +1 if u is prefered to v // w is the cost of misclassification

Algorithm 19 RANKTEST(f, \hat{x} , obj)

- ¹¹ if *obj* contains 0 or 1 elements then
- 2: return *obj*

3: **else**

4:	$p \leftarrow$ randomly chosen object in o	<i>bj</i> // pick pivot	
5:	$left \leftarrow []$	// elements that seem smaller than p	
6:	$right \leftarrow []$	// elements that seem larger than p	
7:	for all $u \in obj \setminus \{p\}$ do		
8:	$\hat{y} \leftarrow f(x_{up})$	// what is the probability that u precedes p	
9:	if uniform random variable $<$	\hat{y} then	
10:	$left \leftarrow left \oplus u$		
11:	else		
12:	$right \leftarrow right \oplus u$		
13:	end if		
14:	end for		
15:	$left \leftarrow \text{RankTest}(f, \hat{x}, left)$	// sort earlier elements	
16:	$right \leftarrow RankTest(f, \hat{x}, right)$	// sort later elements	
17:	return <i>left</i> $\oplus \langle p \rangle \oplus right$		
18: end if			

RankTest

A probabilistic version of the quicksort algorithm

Only O(Mlog₂M) calls to f in expectation

Better error bound than naïve algorithm (see CIML for theorem)

What you should know

- What are reductions and why they are useful
- Implement, analyze and prove error bounds of algorithms for
 - Weighted binary classification
 - Multiclass classification (OVA, AVA)
- Understand algorithms for
 - ω –ranking

Furong Huang 3251 A.V. Williams, College Park, MD 20740 301.405.8010 / furongh@cs.umd.edu