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Project 1 – regrading requests on 
piazza

• all grade requests submitted by Friday 
will be handled by Friday evening

• requests submitted during spring break 
or the week after will be handled daily 
starting the Monday after spring break

• All grade requests must be submitted 
by the Thursday after Spring Break.



Common misunderstandings - I
Misunderstanding I: The classifier is best when 
performance on test and training are equal. (KNN problem)

The best classifier here is for K = 5? (Reasoning, "Since the training and test 
are equal we are generalizing perfectly." ?) NO
In this case, it may not matter much as the difference in accuracy is only .02, 
but if you had training 95 & test 90, you wouldn't want to choose training 60 
test 60 just because they're equal.



Common misunderstandings - II
Misunderstanding II: Generally misunderstanding underfitting
(NN eps problem)

Misunderstanding II(a): “We are underfitting for eps < .35.
Because the test accuracy increases with eps, it is clear we
have not learned everything we can learn from our dataset,
therefore we are underfitting. ” NO



Common misunderstandings - II
Misunderstanding II: Generally misunderstanding underfitting
(NN eps problem)

“Test accuracy shows how well you generalize, training
accuracy shows how much you've learned." With 100%
training and 50% test, we've learned too much, cannot
generalize. Therefore, we're overfitting not underfitting.



Common misunderstandings - II

Misunderstanding II: Generally misunderstanding underfitting
(NN eps problem)

Misunderstanding II(b): "Although training accuracy is 
decreasing, test accuracy is increasing, therefore we can not 
be overfitting". 





Common misunderstandings -
performance on low examples
*Case 1* Why does the training accuracy decrease? 
"there is too much noise in the data" or "it's too hard to 
learn 1200 examples" ? NO

It was because the DT had a fixed max-depth of 9. 
Also, this example has 100% accuracy early on. 

XOR example : DT with a depth of 2, we can get 100% 
accuracy, but with a depth of 1 we cannot. 

By limiting the max-depth we limit what we can learn.



Common misunderstandings -
performance on low examples

DT KNN

*Case 2* Why is there jaggedness on the left?

The behavior can be very random when you've only 
seen a few examples.



What we learned last time

• Ranking

• Bias and Fairness
• Unsupervised adaptation



Supervised adaptation

Goal: learn a classifier f that achieves low 
expected loss under new distribution

Given labeled training data from old distribution 

And labeled examples from new distribution



One solution: feature augmentation

Map inputs to a new augmented representation



One solution: feature augmentation

• Transform Dold and Dnew training 
examples

• Train a classifier on new 
representations

• Done!



One solution: feature augmentation

• Adding instance weighting might be 
useful if N >> M

• Most effective when distributions are 
“not too close but not too far”
• In practice, always try “old only”, “new only”, 

“union of old and new” as well!



Bias and how to deal with it

• Train/test mismatch

• Unsupervised adaptation

• Supervised adaptation



Topics

Linear Models
Loss functions
Regularization

Gradient Descent
Calculus refresher

Convexity
Gradients

[CIML Chapter 6]



Binary classification
via hyperplanes

A classifier is a hyperplane (w,b)
At test time, we check on what 
side of the hyperplane examples 
fall

!" = $%&'()*+ + -)

This is a linear classifier
Because the prediction is a linear 
combination of feature values x





Learning a Linear Classifier
as an Optimization Problem

Indicator function: 1 if (.) is true, 0 otherwise
The loss function above is called the 0-1 loss

Loss function
measures how well 

classifier fits training 
data

Regularizer
prefers solutions 
that generalize 

well

Objective 
function



Learning a Linear Classifier
as an Optimization Problem

• Problem: The 0-1 loss above is NP-hard to optimize 
exactly/approximately in general

• Solution: Different loss function approximations and 
regularizers lead to specific algorithms

(e.g., perceptron, support vector machines, logistic 
regression, etc.)



The 0-1 Loss

Small changes in w,b can lead to big 
changes in the loss value
0-1 loss is non-smooth, non-convex



Calculus refresher:
Smooth functions, convex functions



Approximating the 0-1 loss with 
surrogate loss functions

Examples (with b = 0)
Hinge loss
Log loss
Exponential loss

All are convex upper-
bounds on the 0-1 loss



Approximating the 0-1 loss with 
surrogate loss functions

Examples (with b = 0)
Hinge loss
Log loss
Exponential loss

Q: Which of these loss 
functions is not 
smooth?



Approximating the 0-1 loss with 
surrogate loss functions

Examples (with b = 0)
Hinge loss
Log loss
Exponential loss

Q: Which of these loss 
functions is most 
sensitive to outliers?



Casting Linear Classification
as an Optimization Problem

Indicator function: 1 if (.) is true, 0 otherwise
The loss function above is called the 0-1 loss

Loss function
measures how well 

classifier fits training 
data

Regularizer
prefers solutions 
that generalize 

well

Objective 
function



The regularizer term

Goal: find simple solutions  (inductive bias)

Ideally, we want most entries of w to be zero, so 
prediction depends only on a small number of 
features.
Formally, we want to minimize:

That’s NP-hard, so we use approximations instead. 
E.g., we encourage wd’s to be small



Norm-based Regularizers

!" norms can be used as regularizers

Contour
plots for p = 2 p = 1 p < 1



Norm-based Regularizers

!" norms can be used as regularizers
Smaller p favors sparse vectors w

i.e. most entries of w are close or equal to 0

!# norm: convex, smooth, easy to optimize
!$ norm:  encourages sparse w, convex, but not 
smooth at axis points
% < 1 ∶ norm becomes non convex and hard to 
optimize



Casting Linear Classification
as an Optimization Problem

Indicator function: 1 if (.) is true, 0 otherwise
The loss function above is called the 0-1 loss

Loss function
measures how well 

classifier fits training 
data

Regularizer
prefers solutions 
that generalize 

well

Objective 
function



What is the perceptron optimizing?

Loss function is a variant of the hinge loss



Recap: Linear Models

General framework for binary classification
Cast learning as optimization problem
Optimization objective combines 2 terms

loss function: measures how well classifier fits training 
data 
Regularizer: measures how simple classifier is

• Does not assume data is linearly separable
Lets us separate model definition from 
training algorithm



Calculus refresher:
Gradients



Gradient descent

A general solution for our optimization problem

Idea: take iterative steps to update parameters in the direction 
of the gradient



Gradient descent algorithm



Recap: Linear Models

General framework for binary classification
Cast learning as optimization problem
Optimization objective combines 2 terms

loss function: measures how well classifier fits training 
data 
Regularizer: measures how simple classifier is

• Does not assume data is linearly separable
Lets us separate model definition from 
training algorithm (Gradient Descent)
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