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Recap: Linear Models

General framework for binary classification
Cast learning as optimization problem
Optimization objective combines 2 terms

loss function: measures how well classifier fits training 
data 
Regularizer: measures how simple classifier is

• Does not assume data is linearly separable
Lets us separate model definition from 
training algorithm (Gradient Descent)



Casting Linear Classification
as an Optimization Problem

Indicator function: 1 if (.) is true, 0 otherwise
The loss function above is called the 0-1 loss

Loss function
measures how well 

classifier fits training 
data

Regularizer
prefers solutions 
that generalize 

well

Objective 
function



Gradient descent

A general solution for our optimization problem

Idea: take iterative steps to update parameters in the direction 
of the gradient



Gradient descent algorithm

Objective function 
to minimize

Number of 
steps Step size



Illustrating gradient descent
in 1-dimensional case



Gradient Descent

2 questions
When to stop?

When the gradient gets close to zero
When the objective stops changing much
When the parameters stop changing much
Early
When performance on held-out dev set plateaus

How to choose the step size?
Start with large steps, then take smaller steps



Now let’s calculate gradients for  
multivariate objectives

Consider the following learning objective

What do we need to do to run gradient 
descent?



(1) Derivative with respect to b



(2) Gradient with respect to w



Subgradients

Problem: some objective functions are not 
differentiable everywhere

Hinge loss, l1 norm

Solution: subgradient optimization
Let’s ignore the problem, and just try to apply 
gradient descent anyway!!
we will just differentiate by parts…



Subgradient Review

• Subgradient generalized the 
derivative to functions which 
are not differentiable.

• For any x0 in the domain of 
the function one can draw a 
line which goes through the 
point (x0, f(x0)) and which is 
everywhere either touching
or below the graph of f.

• Set-valued



Subgradient Review 

Rigorously, a subgradient of a convex function f:I→R at a point x0 in the
open interval I is a real number c such that

for all x in I. One may show that the set of subgradients at x0 for a 
convex function is a nonempty closed interval [a, b], where a and b are 
the one-sided limits.

which are guaranteed to exist and satisfy a ≤ b.
• The set [a, b] of all subgradients is called the subgradients of the 

function f at x0. Since f is convex, if its subdifferential at x0 contains 
exactly one subgradient, then f is differentiable at x0.

https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Empty_set
https://en.wikipedia.org/wiki/Closed_interval
https://en.wikipedia.org/wiki/One-sided_limit


Approximating the 0-1 loss with 
surrogate loss functions

Examples (with b = 0)
Hinge loss
Log loss
Exponential loss

What if ! ≠ 0?



Example: subgradient of
hinge loss

For a given example n



Subgradient Descent 
for Hinge Loss



What is the perceptron optimizing?

Loss function is a variant of the hinge loss



Recap: Linear Models

Lets us separate model definition from 
training algorithm (Gradient Descent)



Summary

Gradient descent
A generic algorithm to minimize objective functions
Works well as long as functions are well behaved (ie
convex)
Subgradient descent can be used at points where 
derivative is not defined
Choice of step size is important

Optional: can we do better? 
For some objectives, we can find closed form solutions 
(see CIML 6.6)
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