Slides adapted from Prof Carpuat and Duraiswami



CMSC 422 Introduction to Machine Learning Lecture 14 (Sub)gradient Descent

Furong Huang / furongh@cs.umd.edu

Regrading deadline extended

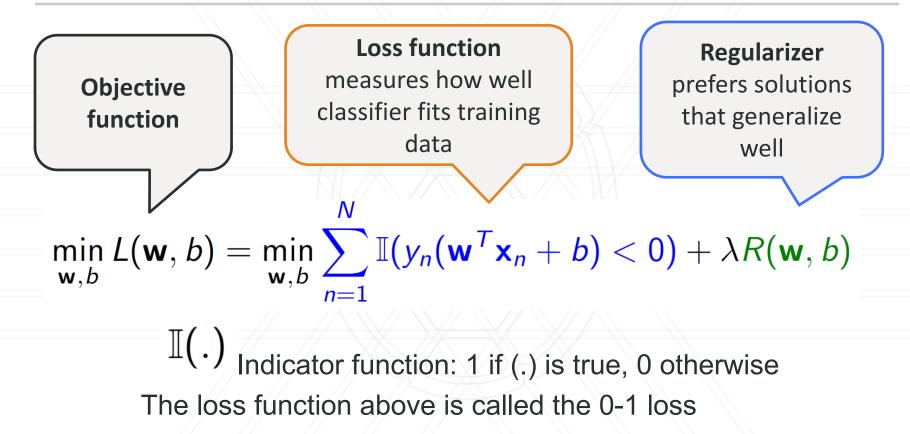
March 29 11:00 am

Submit along with you exam sheets Don't forget to put your name

Recap: Linear Models

- General framework for binary classification Cast learning as optimization problem Optimization objective combines 2 terms loss function: measures how well classifier fits training data Regularizer: measures how simple classifier is
- Does not assume data is linearly separable
 Lets us separate model definition from
 training algorithm (Gradient Descent)

Casting Linear Classification as an Optimization Problem

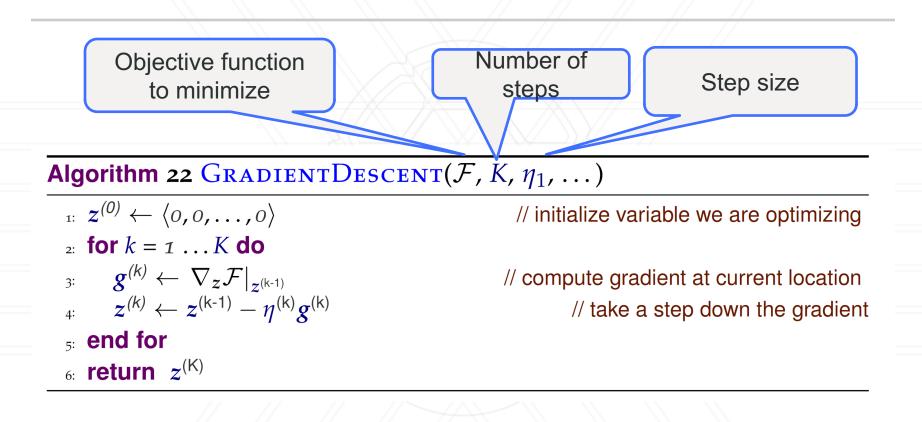


Gradient descent

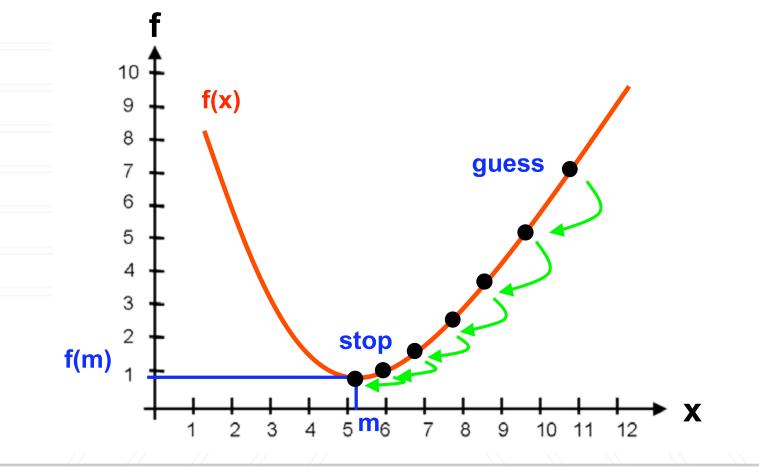
A general solution for our optimization problem $\min_{\mathbf{w},b} L(\mathbf{w}, b) = \min_{\mathbf{w},b} \sum_{n=1}^{N} \mathbb{I}(y_n(\mathbf{w}^T \mathbf{x}_n + b) < 0) + \lambda R(\mathbf{w}, b)$

Idea: take iterative steps to update parameters in the direction of the gradient

Gradient descent algorithm



Illustrating gradient descent in 1-dimensional case



Gradient Descent

2 questions

When to stop?

When the gradient gets close to zero

When the objective stops changing much

When the parameters stop changing much

Early

When performance on held-out dev set plateaus

How to choose the step size?

Start with large steps, then take smaller steps

Now let's calculate gradients for multivariate objectives

Consider the following learning objective

$$\mathcal{L}(\boldsymbol{w},b) = \sum_{n} \exp\left[-y_{n}(\boldsymbol{w}\cdot\boldsymbol{x}_{n}+b)\right] + \frac{\lambda}{2} ||\boldsymbol{w}||^{2}$$

What do we need to do to run gradient descent?

(1) Derivative with respect to b

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial}{\partial b} \sum_{n} \exp\left[-y_{n}(\boldsymbol{w} \cdot \boldsymbol{x}_{n} + b)\right] + \frac{\partial}{\partial b} \frac{\lambda}{2} ||\boldsymbol{w}||^{2}$$
(6.12)
$$= \sum_{n} \frac{\partial}{\partial b} \exp\left[-y_{n}(\boldsymbol{w} \cdot \boldsymbol{x}_{n} + b)\right] + 0$$
(6.13)
$$= \sum_{n} \left(\frac{\partial}{\partial b} - y_{n}(\boldsymbol{w} \cdot \boldsymbol{x}_{n} + b)\right) \exp\left[-y_{n}(\boldsymbol{w} \cdot \boldsymbol{x}_{n} + b)\right]$$
(6.14)
$$= -\sum_{n} y_{n} \exp\left[-y_{n}(\boldsymbol{w} \cdot \boldsymbol{x}_{n} + b)\right]$$
(6.15)

(2) Gradient with respect to w

$$\nabla_{w}\mathcal{L} = \nabla_{w}\sum_{n} \exp\left[-y_{n}(w \cdot x_{n}+b)\right] + \nabla_{w}\frac{\lambda}{2}||w||^{2}$$
(6.16)
$$= \sum_{n} \left(\nabla_{w} - y_{n}(w \cdot x_{n}+b)\right) \exp\left[-y_{n}(w \cdot x_{n}+b)\right] + \lambda w$$
(6.17)

$$= -\sum_{n} y_{n} \boldsymbol{x}_{n} \exp\left[-y_{n}(\boldsymbol{w} \cdot \boldsymbol{x}_{n} + b)\right] + \lambda \boldsymbol{w}$$
(6.18)

Subgradients

Problem: some objective functions are not differentiable everywhere

Hinge loss, I1 norm

Solution: subgradient optimization

Let's ignore the problem, and just try to apply gradient descent anyway!!

we will just differentiate by parts...

Subgradient Review

- Subgradient generalized the derivative to functions which are not differentiable.
- For any x₀ in the domain of the function one can draw a line which goes through the point (x₀, f(x₀)) and which is everywhere either touching or below the graph of f.
- Set-valued

FEARLESS IDEAS

x⁰

Subgradient Review

Rigorously, a *subgradient* of a convex function $f: I \rightarrow \mathbb{R}$ at a point x_0 in the open interval *I* is a real number *c* such that

x₀

$$f(x)-f(x_0)\geq c(x-x_0)$$

for all x in I. One may show that the <u>set</u> of subgradients at x0 for a convex function is a <u>nonempty closed interval</u> [a, b], where a and b are the <u>one-sided limits</u>. $f(x) - f(x_0)$

$$a = \lim_{x o x_0^-} rac{f(x) - f(x_0)}{x - x_0} \ b = \lim_{x o x_0^+} rac{f(x) - f(x_0)}{x - x_0}$$

which are guaranteed to exist and satisfy $a \le b$.

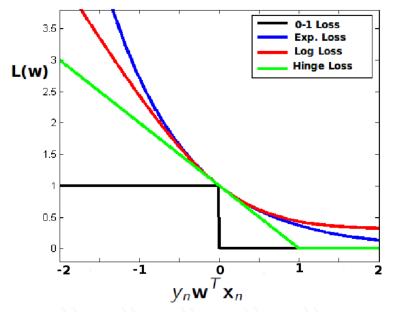
The set [a, b] of all subgradients is called the subgradients of the function f at x₀. Since f is convex, if its subdifferential at x₀ contains exactly one subgradient, then f is differentiable at x₀.

Approximating the 0-1 loss with surrogate loss functions

Examples (with b = 0) Hinge loss $[1 - y_n \mathbf{w}^T \mathbf{x}_n]_+ = \max\{0, 1 - y_n \mathbf{w}^T \mathbf{x}_n\}$ Log loss $\log[1 + \exp(-y_n \mathbf{w}^T \mathbf{x}_n)]$ Exponential loss $\exp(-y_n \mathbf{w}^T \mathbf{x}_n)$

FEARLESS

What if $b \neq 0$?



Example: subgradient of hinge loss

For a given example n

$$\partial_{w} \max\{0, 1 - y_{n}(w \cdot x_{n} + b)\}$$

$$= \partial_{w} \begin{cases} 0 & \text{if } y_{n}(w \cdot x_{n} + b) > 1 \\ y_{n}(w \cdot x_{n} + b) & \text{otherwise} \end{cases}$$

$$= \begin{cases} \partial_{w} 0 & \text{if } y_{n}(w \cdot x_{n} + b) > 1 \\ \partial_{w} y_{n}(w \cdot x_{n} + b) & \text{otherwise} \end{cases}$$

$$= \begin{cases} 0 & \text{if } y_{n}(w \cdot x_{n} + b) > 1 \\ y_{n}x_{n} & \text{otherwise} \end{cases}$$

$$(6.22)$$

Subgradient Descent for Hinge Loss

Algorithm 23 HINGEREGULARIZEDGD(D, λ , MaxIter)

1:
$$w \leftarrow \langle o, o, \dots o \rangle$$
, $b \leftarrow o$
2: for *iter* = 1 ... *MaxIter* do
3: $g \leftarrow \langle o, o, \dots o \rangle$, $g \leftarrow o$
4: for all $(x,y) \in D$ do
5: if $y(w \cdot x + b) \leq 1$ then
6: $g \leftarrow g + y x$
7: $g \leftarrow g + y x$
8: end if
9: end for
10: $g \leftarrow g - \lambda w$
11: $w \leftarrow w + \eta g$
12: $b \leftarrow b + \eta g$
13: end for
14: return w, b

// initialize weights and bias

// initialize gradient of weights and bias

// update weight gradient
// update bias derivative

// add in regularization term
 // update weights
 // update bias

What is the perceptron optimizing?

Algorithm 5 PERCEPTRONTRAIN(**D**, *MaxIter*) 1: $w_d \leftarrow o$, for all $d = 1 \dots D$ // initialize weights $2: b \leftarrow 0$ // initialize bias \therefore for *iter* = 1 ... MaxIter do for all $(x,y) \in \mathbf{D}$ do 4: $a \leftarrow \sum_{d=1}^{D} w_d x_d + b$ // compute activation for this example 5: if $ya \leq o$ then 6: $w_d \leftarrow w_d + yx_d$, for all $d = 1 \dots D$ // update weights 7: $b \leftarrow b + y$ // update bias 8: end if 9: end for 10: **une end for** ^{12:} **return** w_0, w_1, \ldots, w_D, b

Loss function is a variant of the hinge loss $\max\{0, -y_n(\mathbf{w}^T\mathbf{x}_n + b)\}$

Recap: Linear Models

Lets us separate model definition from training algorithm (Gradient Descent)

Summary

Gradient descent

- A generic algorithm to minimize objective functions Works well as long as functions are well behaved (ie convex)
- Subgradient descent can be used at points where derivative is not defined
- Choice of step size is important

Optional: can we do better?

For some objectives, we can find closed form solutions (see CIML 6.6)

Furong Huang 3251 A.V. Williams, College Park, MD 20740 301.405.8010 / furongh@cs.umd.edu